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Abstract—In this paper, we mainly investigate capacity
scaling laws of the mobile ad hoc social networks (MAHSNs)
where social networking applications are implemented
over the underlying mobile ad hoc networks. We model
the real-world mobility pattern of mobile social users by
introducing a clustered model that defines two levels of
mobility, i.e., strong mobility and weak mobility, according
to the impacts of mobility on the gain of network capacity.
To address the formation of social relationships among
mobile social users, we adopt a distance and density-
aware social model called population-distance-based model
that comprehensively and practically takes account of the
clustering levels of friendship degree and distribution.
Under those models, we derive the capacity scaling laws for
social-broadcast sessions in MAHSNs. The results provide
the exploratory insights into the impacts of users’ mobility
patterns and the formation of social relationships on the
network capacity of MAHSNs.

Index Terms—Mobile Social Networks, Network Capac-
ity, Social-Broadcast.

I. INTRODUCTION

In recent years we have witnessed a lot of social

networking applications based on the PC emerge, such

as Facebook, Twitter, Myspace, Skype and so on. The

number of social network users is dramatically increas-

ing. According to the report of TechCrunch website on

Apr 29, 2014, the Twitter user growth accelerated to

5.8%, with 255 million monthly users and 78% of them

were on mobile. Nowadays, as the mobile devices like

smartphones and mobile Pads become more and more

prevalent, the wireless mobile network is very common

and becomes the main communication implementations

for real-life networking applications gradually [1]. On

account of the popularity of mobile and social applica-

tions based on the PC saturate at present, there are an

increasing number of applications moving to the mobile

client, such as WeChat and so on. Moreover, according to

science and technology media uTest’s message on March

13th, 2014, the number of users of mobile APPs was

greater than that of PC for the first time, and the mobile

terminal has become the main internet browsing termi-

nal in America. Obviously, the mobile social networks
(MSNs) are becoming more and more popular.

In this work, we focus on mobile social networks

under the ad hoc communication architecture, called

mobile ad hoc social networks (MAHSNs), which have

many advantages in terms of base stations communica-

tion offloading, users’ privacy preservation, and network

delay reduction. To improve and evaluate the perfor-

mance under dedicated protocols for MAHSNs, it is

indispensable to investigate fundamental limits of system

performance, i.e., the optimal achievable performance.

Specifically, we study the network capacity, a basic

metric of fundamental limits of performance, for data

dissemination in MAHSNs. To examine the network

capacity as the network size gets large, we further limit

the scope of this work to the issue of capacity scaling

laws.

In MAHSNs, the underlying users’ social relationships

generate depending on social users’ mobility patterns,

and finally by cooperating with social users’ mobility

patterns, they exert the influence over the capacity of

the coupled network system. Compared with the study

of capacity scaling laws for general mobile ad hoc

networks (MANETs) [2], the problem for MAHSNs

has a particular challenge: How do we analyze the

combined impacts of the users’ mobility patterns and the

underlying social relationships on the network capacity?

To investigate the network capacity of data dissemina-

tion in MAHSNs, we first analyze the geographic charac-

teristics of data dissemination sessions in MAHSNs, i.e.,

the spatial distribution of traffic sessions (the location

distribution of sources and destinations). Based on the

layered modeling method in [3], we introduce the three-

layered model that consists of the physical network layer

(Layer 1), social relationship layer (Layer 2), and appli-

cation session layer (Layer 3), as illustrated in Fig.1. For

the purpose of deriving the spacial distribution of traffic

sessions depending on users’ geographical distribution,

we can adopt two steps to clarify the correlation between

Layer 3 and Layer 1: Firstly, we start with dredging

the correlation between Layer 2 and Layer 1, i.e., the

relevance between the formation scheme of users’ social

relationships and the distribution model of users’ geo-

graphical locations. Secondly, we model the correlation

between Layer 3 and Layer 2, i.e., the relevance between

the traffic pattern for a specific social application and the

topology of users’ social relationship network. Next, we

will formulate the corresponding models to clarify these

two relevances in the process of modeling Layer 1, Layer

2, and Layer 3, respectively.

Physical Network Layer: We introduce the clustered

model from [4] to express the clustering phenomenon

[5], [6] of real-world mobile users. The work uses

two clustering parameters (m(n), r(n)) to denote this

model, in which n denotes the total number of users

and m(n) and r(n) represent the number and the radius

of clusters, respectively. For each user, we propose a
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notion of home-point according to the frequency of its

check-ins. We define a tension coefficient η(n) = n�

to express the degree of mobility strength, where � ∈
[0, 1/2] is the tension exponent. According to different

mobilities, we denote critical transmission range τ(n) =√
logm(n)/m(n) to divide the mobile nodes into two

cases named strong mobility (when η(n) = o (1/τ(n)) )

and weak mobility (when η(n) = ω (1/τ(n))).
Social Relationship Layer: The significant difference

on Layer 1 from the scenario in [3] is that all users

are assumed to be static. Obviously, it is impractical for

the mobile nodes in MAHSNs. So, the social formation

model proposed in [3] cannot apply directly to this

study. Using the stability of home-point locations, we

bridge the social formation model for static users [3],

[7], [8] to the mobile cases in MAHSNs, and propose

a modified population-distance-based social formation

model due to its reality and practicality. Specifically,

we let the static home-points of mobile nodes map

into the social relationship layer, and let these home-

points choose their own relevant points randomly and

independently. We denote such social formation model

by P(δ, γ, β), where δ ∈ [0,∞) represents clustering

exponent of node distribution, γ ∈ [0,∞) represents

clustering exponent of friendship degree, and β ∈ [0,∞)
represents clustering exponent of friendship formation.

Moreover, we validate this social formation model via

the check-ins records in Gowalla users’ dataset [9].

Application Session Layer: We assume that users

constantly intend to deliver information to some other

users with whom they associate (friends or followers).

In this work, we mainly study the typical dissemination

session, called social-broadcast, under which the source

intends to send information to all of its friends.

Under the three-layered system model, we derive

the main results on the social-broadcast capacity for

MAHSNs, which can be summarized as follows:

• We obtain the main results of the capacity scaling

laws in MAHSNs specifically. To the best of our knowl-

edge, this is the first work to investigate the capacity

scaling laws of MAHSNs by taking account of the im-

pacts of social relationships on the traffic session pattern.

In this paper, to make the physical network layer of the

three-layered social network model more practical, we

improve its apparent shortage caused by the impractical

assumption that the nodes are static and uniform. We

also make research on the relationship between the

capacity and the coefficients γ, β in the population-based

model P(δ, γ, β), where δ ∈ [0,∞) represents clustering

exponent of node distribution, γ ∈ [0,∞) represents

clustering exponent of friendship degree, and β ∈ [0,∞)
represents clustering exponent of friendship formation

[3]. We have a conclusion that larger γ, β can lead to

bigger capacity.

• We show a special session scheme in our three-

layered mobile social network model, named social-

broadcast. It means that a source node communicates

with all its friend nodes.

• We introduce the population-based model P (δ, γ, β)
to choose the destination nodes more practically. This is
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Fig. 1: Three-Layered Model. [3].

different from the independent and random method in

aforementioned work.

The rest of this paper is organized as follows: In

Section 2, we introduce the three-layered model and

show the system assumptions in every layer. We present

the main results on social-broadcast capacity in inhomo-

geneous MAHSNs in Section 3. In Section 4, according

to two different mobility cases, we devise two kinds

of social-broadcast scheduling schemes correspondingly.

An efficient routing policy for social-broadcast is pro-

posed. In Section 5, we present the specific analysis pro-

cess of per-node capacity under two different mobility

cases. Then we review the literatures and highlight the

differences between our work and some related ones in

Section 6. Finally, we conclude this paper in Section 7.

II. SYSTEM ASSUMPTIONS AND NOTATIONS

In this paper, we introduce a new social network

model: Three-layered social network model from liter-

ature [3]. It presents a three-layered perspective for the

mobile ad hoc social networks (MAHSNs), consisting of

the physical network layer, social relationship layer, and

application session layer, as shown in Fig.1.

A. Physical Network Layer

In our model, the bottom layer is physical network

layer. In this layer we give our mobility model and

communication and interference model to analyze the

capacity scaling laws in MAHSNs.

1) Mobility Model: In our mobility model, the net-

work area is considered as a torus O, with n (a random

number) wireless ad hoc nodes moving on its surface

non-uniformly. The torus can avoid border effects. For

convenience, we let the network area be 1 in this paper.

In the process of studying capacity scaling laws in

MAHSNs, we find that the mobility model has a property

of the spatial inhomogeneity of nodes density. It can be

described as follows: The moving range of a node is not

the whole network but a certain region of the network.

That is to say, for most of the time, the node moves in

a certain small territory. It moves far from this region

with low probability or never moves to other territories,

which is called the clustering phenomenon in [4]. This

phenomenon is evident in MAHSNs particularly. User

density is higher in some aggregate regions and lower

in some sparse regions.
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In social networks, the non-uniform user density in

the regions brings the spatial inhomogeneity. In order to

describe this phenomenon, we use the clustered model

[4]. It is denoted by a two-tuples (m(n), r(n)), where

m(n) symbols for the number of clusters and r(n)
symbols for the radius of a cluster. And each cluster has

a center home-point which is expressed as Xh. Then we

suppose that each mobile node i moves into its cluster

and has a home-point Xh
i , which is the position of the

maximal active probability for node i.
From the statements above, since the clustered model

can describe the spatial inhomogeneity property well,

we use it to help us study the capacity scaling laws

in MAHSNs. We find that besides the spatial inhomo-

geneity property, another characteristic also affects the

capacity scaling laws in MAHSNs, which is the node

mobility’s degree. The intensity of the nodes’ mobility

is different: Some mobile nodes can move far from

their home-points to transmit messages, but some only

can move near around the home-points. Because of this

property, it is necessary to divide the mobility into two

cases: strong mobility case and weak mobility case.

To characterize these two cases, we give the defini-

tions of two parameters in our work as follows:

• Tension Coefficient: We define the tension coef-

ficient as η(n) = n� and it stands for the degree of

mobility strength, where � ∈ [0, 1/2] represents tension
exponent [4]. The tension can be interpreted as the pull

of a rubber band that is fixed at the home-point. When

the tension coefficient is large, the rubber band’s pull is

big and so it is hard for the mobile node to move far,

and then we say the mobility is weak. On the contrary,

when the coefficient is small, the mobility is strong. This

parameter represents the node’s ability of moving away

from the home-point.

• Critical Transmission Range: We define the critical

transmission range as τ(n). It stands for the minimal

transmission range that would guarantee the network

connectivity in the case that nodes still remain at their

home-points [4]. According to the clustered model, we

have τ(n) =
√
log(m(n))/m(n), where m(n) repre-

sents the number of clusters.

After giving these two parameters, we use the density

function of node i around its home-point Xh
i to get the

mobile radius of node i [4] . We describe this density

function φi(X) as below:

φ(X −Xh
i ) =

s(η(n)‖X −Xh
i ‖)∫

O s(η(n)‖X −Xh
i ‖)dX

, (1)

where s(η(n)‖X −Xh
i ‖) represents a non-increasing

continuous function, and ‖X−Xh
i ‖ denotes the distance

between the node and its home-point. We notice that

the order of the denominator of Eq.(1):
∫
O s(η(n)‖X −

Xh
i ‖)dX is 1

η2(n) . It tells us the node has a very likely

chance to move in an area of Θ
(

1
η2(n)

)
, then the mobile

radius can be limited to Θ
(

1
η(n)

)
roughly. We define

two kinds of mobility cases through the regulars below:

Regular 1: When η(n) = o
(

1
τ(n)

)
, the case is strong

mobility.
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Fig. 2: The number of friends. [3].

When the node has strong mobility, it can carry

data and move to the destination nodes for exchanging

messages directly. And from Eq.(1) in clustered model,

we know the mobile radius: Θ
(

1
η(n)

)
. So in the strong

case, to guarantee the network connectivity, we give

the critical transmission range as 1
η(n) at most, i.e.,

τ(n) = o
(

1
η(n)

)
. Then we obtain Regular 1.We can see

that the mobility of nodes is a style of transmitting data.

So the mobility plays an important role in exchanging

data. Meanwhile this case can take full advantage of

mobility and make the capacity as big as possible.

Regular 2: When η(n) = w
(

1
τ(n)

)
, the case is weak

mobility.

When the node has weak mobility, because the node

can’t move far or never moves, the network connectivity

mainly relies on the critical transmission range. Thus,

in the weak case, only given 1
η(n) at least, i.e., τ(n) =

w
(

1
η(n)

)
, can the critical transmission range guarantee

the network connectivity. So we obtain Regular 2. Here

the effect of mobility on system performance is weak.

The network connectivity mainly depends on the trans-

mission range of each node, not the node mobility.

2) Communication and Interference Model: We intro-

duce the physical model from [10] as our communication

and interference model in this paper.

B. Social Relationship Layer

The middle layer is social relationship layer. In this

layer, according to the population-based model [3], we

propose a modified population-distance-based social for-

mation model. Not only it is a distance and density-aware

social model, but also it has the mobile nodes. This

new model improves other models in previous works,

such as the distance-based model in [7] and the rank-
based model in [8]. Obviously, this model is more useful,

practical and convenient.

From the physical network layer we know that al-

though the nodes are mobile and non-uniform, the home-

point of each node is static. So we let these home-

points map into the social relationship layer. This way is

reasonable due to the clustered model. Then each mobile

source node vk in physical network layer corresponds

to a static node in social relationship layer. From the

population-based model P(δ, γ, β), we know that the

number of friends of a node obeys the degree distri-

bution. Furthermore, from the model we can get how

those friends are distributed in the network. Usually, the

distribution of each node’s friends is different. Note that

we get some useful system settings from [3]:

• Degree Distribution of Social Relationships

Let qk denote the number of friends of node k. From

[3], we know qk is a variable quantity that obeys the
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degree distribution. For example, in Fig.2 the number of

friends is 5 at a certain probability.

• Distribution of Anchor Points and Friends

We can use Theorem 1 in [3] for every session to

get the distribution of anchor points, which is shown

in Fig.3. Next, using the nearest-principle position of

these anchor points, we obtain the distributions of the

qk friends as shown in Fig.4.

���

���

��
��

Fig. 3: The distribution of anchor points. [3] The persons stand
for the real mobile nodes, the asterisk Pki stands for the anchor
points and the center person Vk stands for the reference node.

C. Application Session Layer

The upper layer is application session layer. In this

layer, different applications determine different social

sessions. In [3], some different social sessions were

introduced, such as posts on Facebook. In those sce-

narios, the source node sends messages to all of its

friends. This pattern is called social-broadcast. Also the

source node can transmit data to one friend or multiple

selected friends, which are named social-unicast and

social-multicast respectively, such as the WeChat.

In this paper we construct our session as the social-

broadcast based on the population-based model, i.e., one

node delivers messages to all its friends. So this session

model is different from Fig.1 and is shown in Fig.5.

Next we will describe social-broadcast session in de-

tails. Let V = {υ1, υ2 · · · υk} denote a set of communi-

cation nodes moving in the network O. The correspond-

ing home-point of each node is denoted by a set Xh =
{Xh

1 , X
h
2 · · ·Xh

k }. To express one social-broadcast ses-

sion in the population-based model, we define the social-

broadcast session by the set Sk := {υk} ∪ {Fk} [3],

where υk represents the source node of every element in

Fk = {υki}qki=1. We use υki to stand for the nearest node

to the corresponding anchor point in the social relation-

ship layer. We can see that υki represents the destination

node, which also has the home-point correspondingly.

And the set Xh
ki,F

= {Xh
k1,F

, Xh
k2,F

· · ·Xh
kqk

,F } can

express the friends’ home-points of the source node υk.

From the population-based model, we suppose that

one source node υk has qk friends. So under social-

broadcast the source node υk communicates with all its

friends, i.e., in every session each source node υk has

qk destinations. The number of friends of each node is

a random variable that obeys the probability distribution

[3]. This way is different from other works in which the

destinations are chosen independently and randomly.

���

��
���

Fig. 4: The distribution of friends. [3] Similarly the node Vk

stands for the reference point, and the asterisk Pki stands for
the anchor points; We use the rule that chooses the nearest
users to the anchor points Pki to be the friends, which are
denoted by the nodes Vki , i.e., the reference point’s friends.
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Fig. 5: The social-broadcast session. [3] The source node sends
message to its i-th friend with probability pi.

D. Network Capacity for Social Sessions

As known to all, the network capacity is a universal

concept. In this paper we quote the definition in [4]

and use analogous notation. We assume that the rate of

packets arriving at every node is λ packets per-slot and

the per-node capacity of the system is Θ(h(n)). Given

a sequence of uniform permutation traffic patterns with

rate λ(n) = h(n), there exist two constants c1, c2, where

c1 < c2 and both of the following properties hold:⎧⎨
⎩

lim
n→∞Pr{c1λ(n)is sustainable} = 1

lim
n→∞Pr{c2λ(n)is sustainable} < 1.

(2)

When there are n nodes, we can say that the network

capacity can reach Θ(nh(n)) in this case.

III. MAIN RESULTS

For convenience, we list some mainly used notations

in TABLE I. In this work, we concentrate on studying

a special case. We suppose that the home-points are

distributed in the area uniformly and independently. As

the home-points are uniform, the clustered model would

become the uniform model [4]. It has said that in the uni-

form model m(n) = n is satisfied. So in this special case

we derive that τ(n) =
√

logm(n)/m(n) =
√
log n/n.

The population-based model P(δ, γ, β) also tells us that

when the nodes are uniform, the clustering exponent of

node distribution satisfies δ = 0. That is to say, we

specifically reduce the complexity from three dimensions

(δ, γ, β) ∈ [0,∞)3 to two dimensions (γ, β) ∈ [0,∞)2.

Under these assumptions, we obtain the bounds on

social-broadcast capacity in two different mobility cases

in MAHSNs. The results are given as follows.
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TABLE I: Main symbols used in this paper
Symbols Descriptions

m(n) the number of clusters

r(n) the radius of a cluster

� tension exponent

η(n) tension coefficient of home-point

τ(n) critical transmission range

Xi(t) the position of node i at time t

dij(t) the distance between node i and j at time t

V the set of source nodes

υk the source nodes

Xh the set of source nodes’ home-point

Xh
k the home-point of mobile node k

qk the number of friend nodes of a source node

Sk the set of social-broadcast sessions

Fk the set of a source node’s friends

Xh
ki,F

the set of friends’ home-points

P(δ, γ, β) the population-based model

δ clustering exponent of node distribution

γ clustering exponent of friendship degree

β clustering exponent of friendship formation

Ates an arbitrary tessellation element

Nh(Ates) the number of home-points in the tessellation Ates

μS(i,j) the probability link capacity between node

i and j under the scheduling scheme S

Ss scheduling scheme under strong mobility case

Sw scheduling scheme under weak mobility case

λ per-node multicast capacity

A. Strong Mobility Case

This case occurs when η(n) = o
(

1
τ(n)

)
. To make the

lower bound tight, i.e., the lower bound asymptotically

approaches the upper bound of social-broadcast capacity,

we let the transmission range satisfy RT = Θ
(

1√
n

)
.

In strong mobility case, the per-node capacity on

social-broadcast is: λ = Θ

(
n

η(n)H(γ, β)

)
.

Combining Lemma 6 and Lemma 9 in [3], we can

obtain the results in TABLE II.

B. Weak Mobility Case

This case occurs when η(n) = ω
(

1
τ(n)

)
. From this

equation we can see the node’s mobility is so weak that

we have to choose RT = Θ
(√

logm(n)
m(n)

)
as the trans-

mission range to guarantee the network’s connectivity.

In this special case we have RT = Θ(
√

logn
n ).

In weak mobility case, the per-node capacity on

social-broadcast is: λ = Ω

(
1

H(γ,β)
√

log n
n

)
.

Also from Lemma 6 and Lemma 9 described in [3],

we can derive our results in TABLE III.

C. Intuitions and Analysis of Main Results

Firstly, we compare TABLE II with TABLE III. Ob-

viously, the strong mobility case has the bigger capacity.

It is well-known that the mobility can increase capacity

[11]. So we validate the correctness of this conclusion

from another perspective.

Secondly, we mainly concentrate on the strong mo-

bility case. We analyze the relationship between the

capacity and the coefficients γ, β in the population-based

TABLE II: Social-Broadcast Capacity in Strong Mobility Case

γ β λ

γ > 2

β > 2 Θ
(

1
η(n)

)

β = 2 Θ
(

1
η(n) logn

)

1 < β < 2 Θ

(
n

β
2
−1

η(n)

)

β = 1 Θ
( √

logn
η(n)

√
n

)

0 ≤ β < 1 Θ
(

1
η(n)

√
n

)

γ = 2

β ≥ 2 Θ
(

1
η(n) logn

)

1 < β < 2 Θ

(
n

β
2
−1

η(n)

)

β = 1 Θ
( √

logn
η(n)

√
n

)

0 ≤ β < 1 Θ
(

1
η(n)

√
n

)

3/2 < γ < 2

β ≥ 2γ − 2 Θ
(

nγ−2

η(n)

)

1 < β < 2γ − 2 Θ

(
n

β
2
−1

η(n)

)

β = 1 Θ
( √

logn
η(n)

√
n

)

0 ≤ β < 1 Θ
(

1
η(n)

√
n

)

γ = 3/2

β > 1 Θ
(

1
η(n)

√
n

)

β = 1 Θ
(

1
η(n)

√
n logn

)

0 ≤ β < 1 Θ
(

1
η(n) logn

√
n

)

1 < γ < 3/2 β ≥ 0 Θ
(

nγ−2

η(n)

)

γ = 1 β ≥ 0 Θ
(

logn
η(n)n

)

0 ≤ γ < 1 β ≥ 0 Θ
(

1
η(n)n

)

model P(δ, γ, β). The results in TABLE II intuitively

show that for both γ and β the range of social-broadcast

capacity is
[

1
η(n) ,

1
nη(n)

]
. In this range, the capacity

is nondecreasing monotonically. We make an intuitive

explanation: when the clustering exponent of friendship

degree γ is larger, the number of each user’s friends

can be limited by a smaller upper bound with high

probability, and this situation makes the social-broadcast

capacity larger. Similarly, when the clustering exponent

of friendship formation β is larger, the friends can be

closer to users in a large probability. This brings that

the total transmission distance of each social-broadcast

session reduces possibly, i.e., the nodes can deliver

messages directly. It results in a larger social-broadcast

capacity finally. Shortly speaking, the larger γ and β are,

the larger the social-broadcast capacity is.

Thirdly, as the large clustering exponent of friendship

degree γ and clustering exponent of friendship formation

β can lead to the large capacity, we can see in the strong

mobility case, when γ > 2 and β > 2, the capacity has

the ability to reach the maximal value Θ(1) theoretically.

IV. SOCIAL-BROADCAST POLICY

Before obtaining the capacity, we must propose the

scheduling policy and routing policy.
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TABLE III: Social-Broadcast Capacity in Weak Mobility Case

γ β λ

γ > 2

β > 2 Θ
(

1√
n logn

)

β = 2 Θ
(

1
logn

√
n logn

)

1 < β < 2 Θ

(
n

β
2
−1

√
n logn

)

β = 1 Θ
(
1
n

)

0 ≤ β < 1 Θ
(

1
n
√

logn

)

γ = 2

β > 2 Θ
(

1
logn

√
n logn

)

1 < β < 2 Θ

(
n

β
2
−1

√
n logn

)

β = 1 Θ
(
1
n

)

0 ≤ β < 1 Θ
(

1
n
√

logn

)

3/2 < γ < 2

β > 2γ − 2 Θ
(

nγ−5/2√
logn

)

1 < β < 2γ − 2 Θ

(
n

β
2
−1

√
n logn

)

β = 1 Θ
(
1
n

)

0 ≤ β < 1 Θ
(

1
n
√

logn

)

γ = 3/2

β > 1 Θ
(

1
n
√

logn

)

β = 1 Θ
(

1
n logn

)

0 ≤ β < 1 Θ
(

1
n log3/2 n

)

1 < γ < 3/2 β ≥ 0 Θ
(

nγ−5/2√
logn

)

γ = 1 β ≥ 0 Θ

(
1

n
√

n/ logn

)

0 ≤ γ < 1 β ≥ 0 Θ
(

1
n
√

n logn

)

According to two different cases, we formulate two

different scheduling policies and routing policy R that

are similar to [12]. The only difference is the transmis-

sion range and the side length. The scheduling policy

in strong mobility case Ss: it is optimal to choose

RT = Θ
(

1√
n

)
as the transmission range and the side

length is c
η(n) . The scheduling policy in weak mobility

case Sw: the transmission range is Θ(τ(n)) and the side

length is
√

(16 + δ)τ(n).

V. SOCIAL-BROADCAST CAPACITY FOR MAHSNS

In this section, we analyze the social-broadcast capac-

ity in two different mobility cases in details.

A. Analysis in strong mobility case

From Section 2, the η(n) = o
(

1
τ(n)

)
is satisfied in

strong mobility case. Then we give the upper bound and

lower bound of per-node capacity.

1) Upper bound : To obtain the upper bound of

social-broadcast capacity in strong mobility case, we

adopt the curve method which is similar to the method

in [4]. The steps of this method are described as follows:

1. Use the convex, simple, regular, closed curve L to

partition the area into two regions IL and EL.

2. Figure out the number of social-broadcast flows

crossing L denoted by NL.

3. Calculate the maximum of the entire traffic crossing

L by
∑

i:Xh
i ∈IL

∑
j:Xh

j ∈EL μij .

4. Use the inequality λ ≤
∑

i:Xh
i
∈IL

∑
j:Xh

j
∈EL

μij

NL
to

get the upper bound of per-node capacity λ.

The following theorem gives the upper bound of per-

node capacity in strong mobility case.

Theorem 1. For a mobile ad hoc social network O
consisting of n mobile nodes that are distributed non-
uniformly and move in strong mobility case, by the
scheduling scheme Ss, the upper bound of per-node

capacity can be achieved of λ = Θ

(
n

η(n)H(γ, β)

)
.

Proof. In our social-broadcast session, there are many

session flows going through the curve. Owing to the

social relationship in the population-based model, dif-

ferent source nodes have different friends’ distributions,

and then different sessions have different lengths and

different probabilities going through the curve. Firstly,

we choose one social-broadcast session to study, and

then we conduct all social-broadcast sessions.

We use lk,i to represent the side of the ith edge of

the kth social-broadcast session. The probability of this

social-broadcast session lk,i passing through L is the

horizontal component, denoted by lhk,i. Let NL denote

the number of social-broadcast flows crossing L. Then

from the proof of Theorem 3 in [12] we get the following

equation: NL =
n∑

k=1

qk∑
i=1

lhk,i, where lhk,i is only the length

of one social-broadcast session and other sessions have

different lengths. As we assume that every one node has

qk friends, that is to say, each node has qk sessions. And

from [3] we obtain that qk is not a constant value but a

variate that obeys the following distribution:

Pr(qk = l) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Θ(l−γ), γ > 1;

Θ

(
1

logn
· l−1

)
, γ = 1;

Θ(nγ − 1) · l−γ , 0 ≤ γ < 1;

(3)

where γ ∈ [0,∞) represents the clustering exponent

of friendship degree.

According to Lemma 6 of [3], the length

of all sessions in population-based model is∑n
k=1 |EMST (Sk)| = Ω(H(γ, β)). Thus, we have

NL ≥ H(γ, β). And by the result in [4], we can get:∑
i:Xh

i ∈IL

∑
j:Xh

j ∈EL μij ≤ nπc21
η(n)

,

The second step is obtained by Proposition 2 in [4].

We adopt the inequality to obtain the upper bound

λ = Θ

(
nπc21

η(n)H(γ, β)

)
= Θ

(
n

η(n)H(γ, β)

)
,

where η(n) represents the tension coefficient of home-

point and from Lemma 6 in [3] we can get our results

as listed in the tables in Section 3.

2) Lower bound : We employ the method of lattice

view in [3].

Using the similar method as in [12], we work out

the probability link capacity between node i and node

j under scheduling scheme Ss. From [13], we know

the probability link capacity is the maximal traffic flow

between them. By Theorem 2 in [4], we get:
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μSs

(i, j) = Θ(g(n)f(η(n)‖Xh
j −Xh

i ‖)), (4)

where
g(n) = πR2

T (n)η
2(n) = πc21

η2(n)

n
,

f(‖Y ‖) =
∫
X∈R

s(‖X − Y ‖)s(‖X‖)dX.

Then we use the lattice view method [3] described as

follows:

1. Partition the area into a sequence of regular tessel-

lations and each side length is c
η(n) .

2. Figure out the probability link capacity between

nodes i and j based on Eq. (4).

3. From Lemma 1 of [4] we can get the number of

mobile nodes whose home-points fall in Ates and Btes,

then we can work out the feasible maximal traffic flow

by μSs

(dAtes,Btes) ·Nh(Ates) ·Nh(Btes).
4. From Lemma 1, based on the minimal spanning

tree of social-broadcast session
∑n

k=1 |EST (Sk)| =
O(H(γ, β)) [3], we work out all the social-broadcast

flows going through the Ates.

5. At last, we can use the inequality below to obtain

the lower bound of per-node capacity λ.

λ ≥ μSs
(dAtes,Btes )·Nh(Ates)·Nh(Btes)

Prall .

Lemma 1. In the strong mobility case, the number of
social-broadcast flows going through a given tessellation
Ates is min

(√
2cH(γ,β)
η(n) + Q(γ)c2

η2(n) , 1
)

.

Proof. Firstly, we partition the area into a sequence of

regular tessellations, and then assume that there are many

social-broadcast flows through the network. Because in

the population-based model, the number of friends and

their distributions are variables that obey the power law,

different session flows have different lengths and the

probability of each social-broadcast flow going through

a tessellation Ates is different.

We choose one social-broadcast flow among them

to analyze and suppose the length is l, and then let

this flow map to the horizontal and vertical projects.

They are defined as lh and lv respectively. In strong

mobility case, the side length of Ates is c
η(n) , where

c is a constant. Then we can derive the probability of

this social-broadcast flow going through Ates by the

following equation and express it as

Pr(l, Ates) =
c2

η2(n)

(
lh+lv

c
η(n)

+ 1
)
≤

√
2lc

η(n) +
2qkc

2

η2(n) .

To get a tight upper bound, the last step employs the

law of large numbers. And the parameter n in this law

changes to qk since this session flow has qk destinations.

Note that there are n social-broadcast flows and dif-

ferent flows have different lengths and different prob-

abilities to go through this tessellation Ates. To obtain

how many social-broadcast flows go through Ates, we

introduce the following factors.

Because in the population-based model it is not cer-

tain whether the length of other social-broadcast flows

also equals l, we use Euclidean Spanning Tree (ES-

T) to express the whole length of all social-broadcast

flows. By Lemma 9 of [3], the length of EST is∑n
k=1 |EST (Sk)| = O(H(γ, β)).

Note that each node has qk friends, so we can get the

order of all nodes’ friends from the proof of Lemma 6

in [3] by
∑n

k=1 qk = Q(γ) where:

Q(γ) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Θ(n), γ > 2;

Θ(n log n), γ = 2;

Θ(n3−γ), 1 < γ < 2;

Θ(n2/ log n), γ = 1;

Θ(n2), 0 ≤ γ < 1;

(5)

Therefore, we can obtain the number of social-

broadcast session flows going through the network:

Prall ≤
√
2c

∑n
k=1 |EST (Sk)|
η(n)

+

∑n
k=1 qkc

2

η2(n)
.

So in the social-broadcast session, we have:

Prall = min

(√
2cH(γ, β)

η(n)
+

Q(γ)c2

η2(n)
, 1

)
.

To figure out the per-node capacity λ, we use routing

policy R and scheduling scheme Ss to gain a lower

bound. We assume that there exists a social-broadcast

session S1 := {υ1} ∪ {F1} and adopt routing policy

R to construct a social-broadcast tree in virtue of their

home-points. In the process of actual transmission, the

associated nodes can transmit data when adjacent tessel-

lations’ home-points use scheduling scheme Ss.

From above we can derive the results in Theorem 2.

Theorem 2. For a mobile ad hoc social network O
consisting of n mobile nodes that are distributed non-
uniformly and move in strong mobility case, by the
scheduling scheme Ss, the lower bound of per-node
capacity can be achieved of λ = Ω

(
n

H(γ, β)η(n) +Q(γ)

)
.

Proof. Assuming that there are two adjacent tessella-

tions: Ates and Btes. By Lemma 1 in [4] we can get

the lower bound of the number of mobile nodes whose

home-points fall in Ates and Btes as

Nh(Ates) = Nh(Btes) =
n|Ates|

2
=

c2n

2η2(n)
.

The distance between these two tessellations is de-

noted by dAtes,Btes . Two adjacent tessellations can

transmit at the same time without interference. When

dAtes,Btes =
√
5c

η(n) , according to Eq.(4), we obtain that

μSs

(dAtes,Btes) = g(n)f(
√
5c), where the constant c is

chosen such that f(
√
5c) > 0. According to the step 5,

we have the inequality

λ ≥ μSs

(dAtes,Btes) ·Nh(Ates) ·Nh(Btes)

Prall
.

The numerator means the feasible maximal traffic

flow between adjacent tessellations and its value can be

obtained from equations above. As for the denominator,

we can get its value by Lemma 1.

At the end, we can obtain the lower bound for the

strong mobility case: λ ≥ πc4c21η(
√
5c)n

4
√
2H(γ, β)η(n) +Q(γ)c

.

It means that the per-node capacity is:

λ = Ω

(
n

H(γ, β)η(n) +Q(γ)

)
.
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TABLE IV: Comparison between Upper and Lower Bounds

γ β H(γ, β)η(n) Q(γ)

γ > 2

β > 2 nη(n)

β = 2 nη(n) logn

1 < β < 2 n2−β/2η(n) n

β = 1 n3/2η(n)√
logn

0 ≤ β < 1 n3/2η(n)

γ = 2

β ≥ 2 nη(n) logn

1 < β < 2 n2−β/2η(n)

β = 1 n3/2η(n)√
logn

n logn

0 ≤ β < 1 n3/2η(n)

3/2 < γ < 2

β ≥ 2γ − 2 η(n)n3−γ

1 < β < 2γ − 2 n2−β/2η(n)

β = 1 n3/2η(n)√
logn

0 ≤ β < 1 n3/2η(n) n3−γ

γ = 3/2

β > 1 n3/2η(n)

β = 1 n3/2η(n)
√
logn

0 ≤ β < 1 n3/2 lognη(n)

1 < γ < 3/2 β ≥ 0 η(n)n3−γ

γ = 1 β ≥ 0 η(n)n2

logn
n2

logn

0 ≤ γ < 1 β ≥ 0 n2η(n) n2

3) The comparison of upper bound and lower bound
: From Theorem 1 and Theorem 2 we see that the

difference between per-node capacity results of the upper

bound and lower bound is that the denominator of the

lower bound has an extra factor Q(γ). Since we have

known the degree distribution function of qk from Eq.(3),

we can get its order from Eq.(5). Here we mainly

consider the order of the two factors: H(γ, β)η(n) and

Q(γ). Combining Lemma 6 in [3] and Eq.(5), we give

the comparison between the two factors in TABLE IV.

From the comparison, we can derive that

Θ(H(γ, β)η(n)) = Θ(H(γ, β)η(n) + Q(γ)), which

tells us that the upper bound and lower bound are of

the same order. So this reflects that our results have a

tight lower bound. In other words, there is no gap in

our results between the upper bound and lower bound.

Then we have the general results given in Theorem 3.

Theorem 3. For a mobile ad hoc social network O
consisting of n mobile nodes that are distributed non-
uniformly and move in strong mobility case, by the
scheduling scheme Ss, the bound of per-node capacity

can be achieved of λ = Θ

(
n

η(n)H(γ, β)

)
.

B. Analysis in weak mobility case

From Section 2 we have already known that η(n) =

ω
(

1
τ(n)

)
is satisfied in weak mobility case.

In this case we only analyze the lower bound, so we

directly apply the same method to the lower bound as in

strong mobility case. Note that in weak mobility case,

the side length is
√

(16 + δ)τ(n) which is different from

the strong mobility case.

Lemma 2. In the weak mobility case, the number of
social-broadcast flows going through a given tessellation
Ates is min

(√
2H(γ, β)

√
(16 + δ)τ(n) +Q(γ)(16 + δ)τ2(n), 1

)
.

Here we omit the proof due to the limited space. And

the method is similar to that of Lemma 1.

Theorem 4. For a mobile ad hoc social network O
consisting of n mobile nodes that are distributed non-
uniformly and move in weak mobility case, by the
scheduling scheme Sw, the lower bound of per-node

capacity can be achieved of λ = Ω

(
1

H(γ,β)
√

log n
n

)
.

Proof. Similarly, we suppose that there are two ad-

jacent tessellations Ates and Btes. Because of η(n) =

ω
(

1
τ(n)

)
, this case adopts the scheduling scheme Sw

which uses K2-TDMA [14].

By Lemma 2, we get the maximal load, i.e.,

the maximal number of social-broadcast flows:

O(
√
2H(γ, β)

√
(16 + δ)τ(n) +Q(γ)(16 + δ)τ2(n)).

Thus, we have the lower bound of weak mobility case

λ ≥
1

K2√
2H(γ,β)

√
(16+δ)τ(n)+Q(γ)(16+δ)τ2(n)

. Hence, we

obtain λ = Ω

(
1

H(γ,β)
√

log n
n +Q(γ) log n

n

)
. We employ

Lemma 9 in [3] and use Q(γ) described in Eq.(5) to

analyze this result. Next, we compare the order of the

two factor H(γ, β)
√

logn
n and Q(γ) logn

n . Using the

same method in TABLE IV, we draw a conclusion that

the order of the former is bigger than that of the latter.

So we have

Θ

(
H(γ, β)

√
logn
n +Q(γ) logn

n

)
= Θ

(
H(γ, β)

√
logn
n

)
.

VI. RELATED WORK

In terms of network capacity, the ground-breaking

study was Kumar and Gupta’s research [10]. After that in

order to improve the network capacity, many works put

forward different methods by introducing some special

characteristics into network. For example, D.Tse et al.

[11] made a great progress on the capacity by consid-

ering the mobility. He proposed the store-carry-forward

relaying scheme to make the per-node capacity sustain

Θ(1).

Meanwhile, people studied different mobility models.

The literature [15] carried on an investigation on mobil-

ity models in the mobile ad hoc network (MANET) and

emphasized its importance. The simplest model was the

i.i.d. model which was a random and independent model.

Clearly it was an ideal model. After that, some realistic

mobility models were proposed, such as random walk

mobility model [16], Brownian mobility model [17],

and random way-point mobility model [18]. However,

in these models the nodes moved globally all over the

network area, which was impractical. Then M.Garetto et

al. [4] proposed a more practical model: cluster mobility

model. Later, Li et al. [12] introduced this cluster mo-

bility model and obtained the per-node capacity on the

multicast session in the mobile ad hoc network instead

of the unicast session in [4].
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The above studies did not consider the effect of social

interactions among nodes. The social network was first

studied by Milgrams’ experiments [19]. Later, Mascolo

et al. [20] proposed a new mobility model founded on

social network theory. At the same time, Kleinberg [7]

proposed the distance-based social model. Later, Nowell

et al. [8] indicated that this model underestimated the

inhomogeneity of users’ geographical distribution and

put forward the rank-based model. Recently, Wang et al.

[3] proposed a three-layered social network model and

also worked out a new source-destination pairs called

population-based model which took both the distance

and density into account. Then he addressed the issue of

capacity scaling laws.

There were many studies on the capacity of the mobile

network, as well as that of the social network, like [21].

But few research focused on the capacity scaling laws of

mobile ad hoc social networks (MAHSNs). Our work is

different from other works in that we choose destinations

by population-based model instead of i.i.d model, though

we introduce the clustered model. Moreover, although

we employ the three-layered social network model from

[3], we improve its static underlying networks to mobile

networks. In all, our study gives a reasonable and

practical model of the mobile nodes’ relationship and

formulates the corresponding traffic session pattern in

MAHSNs.

VII. CONCLUSION AND FUTURE WORK

In this paper, we mainly address the capacity scaling

laws of the MAHSNs under the social-based session

formation. We develop the system model in this paper

by introducing the three-layered social network model.

We use the clustered model with clustering parameters

(m(n), r(n)) to characterize the spatial inhomogeneities

of nodes density. Then by the population-based model,

we obtain the degree distribution of mobile nodes’

friends. Finally, we work out the capacity scaling laws

of social broadcast. This work can act as the first step of

investigating the capacity under the three-layered model

with mobile and non-uniform nodes.

There are still several problems to be studied. Firstly,

our work only analyzes a special case: the home-points

are uniform. Next we will research the non-uniform case,

i.e., δ 	= 0. Secondly, we assume that the nodes move

in the ad hoc network, which is obviously impractical

because in real life the infrastructure is important. So

we will study the MAHSNs with infrastructure in our

future work. Thirdly, we could further study the ca-

pacity scaling laws of other session models, such as

social-unicast/social-multicast and social-anycast/social-

manycast.
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