
12

APPENDIX A
“OUT-POOL” CASE
The “out-pool” case contains tracking foreign nodes algo-
rithm and tracking missing nodes algorithm.

(a) (b) (c)

Fig. 6: The red node is a foreign node with adding edges depicted by
dotted lines. In (a), the foreign node joins its adjacent community. In
(b), the foreign node forms new communities with neighbors. In (c), the
foreign node unites the solitary nodes to form a new community.

Algorithm 4 Tracking Foreign Nodes
Input: the current community structure Ct
Output: the updated structure Ct+1

1: if node u is added without edges, then
2: CSt = CSt

∪
{u}

3: else u with edges
4: xt ← apply Definition 4 on the community graph of Ct
5: for each wt

uv ∈Wt

6: if wt
uv < xt

7: Et ← Et \ (u, v)
8: update the set of Nt(u)
9: Ct

1, C
t
2, ..., C

t
k ← adjacent communities of u

10: for i = 1 do to k
11: Ot(u, v)← the induced subgraph of Gt(xt) based on Ct

i

∪
{u}

12: if Φ(Ot(u, v)) ≥ δ(Ot(u, v)) and |Vt(u, v)| ≥ 4
13: Ct

i ← Ct
i

∪
{u}

14: else
15: Ot(u, v)← the induced subgraph of Gt(xt) based on Ct

i

∩
Nt(u)

16: if Φ(Ot(u, v)) ≥ δ(Ot(u, v)) and |Vt(u, v)| ≥ 4

17: define Vt(u, v) of Ot(u, v) as a new community C
′

18: for v ∈ CSt and Comt(u)
∩

Comt(v) = ∅
19: Ot(u, v)← the induced subgraph of Gt(xt) based on
20: Nt(u)

∩
Nt(v)

21: if Φ(Ot(u, v)) ≥ δ(Ot(u, v)) and |Vt(u, v)| ≥ 4

22: define Vt(u, v) of Ot(u, v) as a new community C
′

23: merge overlapping communities on Ct
1, C

t
2, ..., C

t
k and C

′

24: update Ct to Ct+1

Firstly, we analyze Algorithm 4 about adding foreign
nodes case. There are two possibilities, one is the node
added without edges, the other is added with edges. If node
u satisfies the former case, we simply join u to the current
community structure. If u is the latter case, it becomes a
little complicated and needs three operations, as illustrated
in Fig. 6: 1) Because u is added with edges, it may join to
its adjacent communities, i.e., step 9 − 13. 2) Uniting its
neighbors, the foreign node u may form new communities,
i.e., step 15− 17. 3) Considering the set of solitary nodes,
node u may shape new communities, i.e., step 18− 22.

Secondly, we study Algorithm 5 about tracking missing
nodes case. 1) If node u is a solitary node or du = 1,
we simply remove the node from the current community
structure. 2) Otherwise, there are two operations, as illus-
trated in Fig. 7. One is the remaining structure can maintain

the original community, i.e., step 8 − 12, the other is the
remains may form new communities, i.e., step 14− 16.

(a) (b)

Fig. 7: The red node represents the missing node with removing edges
depicted by dotted lines. In (a), the remaining structure can maintain the
original shape. In (b), the remains forms two new communities.

Algorithm 5 Tracking Missing Nodes
Input: the current community structure Ct
Output: the updated structure Ct+1

1: if u is a solitary node or dtu = 1
2: Ct ← Ct \ Ct(u)
3: else
4: xt ← apply Definition 4 on the community graph of Ct
5: for each wt

uv ∈Wt

6: if wt
uv < xt

7: Et ← Et \ (u, v)
8: for each subset Ct

i in Ct(u) or in Ct(v)
9: Ot(u, v)← the induced subgraph of the filter graph Gt(xt)

10: based on the remaining nodes in one subset Ct
i of Ct(u)

11: if Φ(Ot(u, v)) ≥ δ(Ot(u, v)) and |Vt(u, v)| ≥ 4
12: Ct

i ← Vt(u, v)
13: else
14: sort the weight of Et(u, v) in a descending order
15: from the largest weighted edge (u, v) ∈ Et(u, v)

16: do Algorithm 2 step 8−10 to gain new communities sequence C
′

17: merge overlapping communities
18: update Ct to Ct+1

APPENDIX B
“IN-POOL” CASE

The “in-pool” case contains tracking adding edges algorith-
m and tracking removing edges algorithm.

(a) (b)

Fig. 8: The red dotted line represents an adding edge. In (a), the new edge
shapes a new community. In (b), for an adding edge, one of its endpoints
joins the community of the opposite side.

Firstly, we discuss Algorithm 6 about adding edges case.
There are two possibilities, one is two endpoints of the
adding edge are in the same community, the other is in
the different communities. In the former case, community
structure does not change, because adding edges increases
the weighted density of communities. In the latter case, we
further divide it into two operations, as illustrated in Fig. 8.
1) If the adding edges come from current nodes, we decide
whether the edge (u, v) can form a new community, i.e.,
step 4−9. Besides, we still need to judge whether the node

13

Algorithm 6 Tracking Adding Edges
Input: the current community structure Ct
Output: the updated structure Ct+1

1: if Comt(u)
∩

Comt(v) ̸= ∅
2: Ct+1 ← Ct
3: else
4: if Comt(u) ̸= ∅ and Comt(v) ̸= ∅
5: if Comt(u)

∩
Comt(v) = ∅ then

6: Ot(u, v)← the induced subgraph of Gt(xt) based on
7: Nt(u)

∩
Nt(v)

8: if Φ(Ot(u, v)) ≥ δ(Ot(u, v)) and |Vt(u, v)| ≥ 4

9: define Vt(u, v) of Ot(u, v) as a new community C
′

10: else
11: for each subset Ct

i in Ct(u) or in Ct(v)
12: Ot(u, v)← the induced subgraph of Gt(xt) based on one
13: subset Ct

i of Ct(u)∪{v} or one subset Ct
i of Ct(v)∪{u}

14: if Φ(Ot(u, v)) ≥ δ(Ot(u, v)) and |Vt(u, v)| ≥ 4
15: Ct

i ← Ct
i ∪ {v} or Ct

i ← Ct
i ∪ {u}

16: if (Comt(u) = ∅ and Comt(v) ̸= ∅) or (Comt(v) = ∅ and
17: Comt(u) ̸= ∅)
18: only do Algorithm 6 step 5− 9
19: merge overlapping communities
20: update Ct to Ct+1

u or v will join the community of the opposite side, i.e., step
10−15. 2) If the adding edges come from the new foreign
nodes, we only need to process the edge (u, v), i.e., judging
whether to shape a new community or not, described in step
16 − 18. Some operations about two endpoints have been
done in Algorithm 4.

Secondly, we study Algorithm 7 about tracking remov-
ing edges case. There are also two possibilities, one is
two endpoints of the removing edge are in the different
community, the other is in the same communities. In the
former case, the community structure does not change. In
the latter case, as illustrated in Fig. 9, we only need to
concern the case that the removing edges come from the
existing networks. Because if the removing edges come
from the missing nodes, the corresponding operations have
been done in Algorithm 5. Therefore, in Algorithm 7, 1) We
decide whether the remaining structure can still maintain
or not, i.e., step 2− 6. 2) Otherwise, the remains can form
some new communities, i.e., step 8− 10.

(a) (b)

Fig. 9: The red dotted line represents a removing edge. In (a), the
remaining structure can still maintain. In (b), the remaining structure forms
two new communities.

APPENDIX C
IMPLEMENTATION OF COMMUNITY DETEC-
TION METHOD SAWD
For algorithm 2 and 3 are centralized. For algorithm 2,
it only executes once at the initial constructing stage. For
algorithm 3, it is only used to collect edge weights and
calculate the media of the weight set Wt for finding the

Algorithm 7 Tracking Removing Edges
Input: the current community structure Ct
Output: the updated structure Ct+1

1: if Comt(u) ̸= ∅ and Comt(v) ̸= ∅
2: for each subset Ct

i in Ct(u) or in Ct(v)
3: Ot(u, v)← the induced subgraph of Gt(xt) based on the
4: remaining nodes in one subset Ct

i of Ct(u) after removing (u, v)
5: if Φ(Ot(u, v)) ≥ δ(Ot(u, v)) and |Vt(u, v)| ≥ 4
6: Ct

i ← Vt(u, v)
7: else
8: sort the weight in Et(u, v) in a descending order
9: from the largest weighted edge (u, v) ∈ Et(u, v)

10: do Algorithm 2 step 8−10 to gain new communities sequence C
′

11: merge overlapping communities
12: update Ct to Ct+1

changed edges as time goes by. These costs are bearable
for a global centralized server and all these work can be
done effectively.

For the dynamic tracking algorithm 4-7, they all use
local structure information to handle all changes, thus,
a decentralized deployed way is fit for them. That is to
say, nodes undertake a large portion of work. A node
has perfect knowledge of its neighbors and some local
approximation knowledge captured by its neighbors. Some
required information is transferred through node to node,
like literature [32]. Node u has the knowledge of its neigh-
bors Nt(u) and its belonging community(communities)
Comt(u) (In practice, each community label in Comt(u)
is marked with the set of its members). Through one of
its neighbors node v, node u also can gain the information
of Nt(v) and Comt(v). Based on these, the knowledge
of Ot(u, v) can be obtained by node u. Besides, node u
can collect the information from its neighbors and some
local approximation knowledge captured by its neighbors.
For example, a community contains node 1, node 3, node
5 and node 7. For node 1, its neighbors are node 3 and
node 5. Because, node 1 has the knowledge of Nt(1) and
Comt(1). Thus, it knows its neighbors node 3 and node 5
and all its community members. Then, node 1 can collect
the connectivity information from its neighbors and some
local connectivity knowledge captured by its neighbors.
Because the weighted criterion of community in Definition
6 can limit the emergence of large communities and the
communities are located geographically, so, node 1 can
know the sum of edge weight between any two nodes
in one of its belonging community Ct

i and can judge the
local community for each dynamic change. Besides, each
node only collects the information of its own communi-
ty(communities), not the entire network, thus, the work load
of a node will not be too large to bear.

The efficient distributed implementation is a common
issue and indeed not an easy problem in community de-
tection research. Usually, efficient distribution and precise
detection result cannot be gained simultaneously. In the
future, a hybrid underlying infrastructure will be a solution
for this problem.

14

APPENDIX D
COSTS OF COMMUNITY DETECTION METHOD
SAWD
Lemma 1. The time complexity of Algorithm 2 is O(M +
M logM +N2).

Proof: Assuming there are N nodes and M edges in
a social weighted graph. First, time complexity of getting
the median of the set of weights Wt is O(M). Next,
because there are M edges which require to compare with
the median, the time complexity of comparison is O(M).
Then, for Step 6, time complexity of sorting the weighted
edges is O(M logM). Finally, from Step 7 to Step 12, we
have to find the intersection of Nt(u) and Nt(v). Because
|Nt(u)| + |Nt(v)| = dt(u) + dt(v), the time complexity
for each weighted edge is Σu∈Vtd

t(u) = 2M . From Step
13 to Step 17, suppose there are N0 raw communities
in Craw at Step 12, according to Lemma 11.8 in [33],
when the number of nodes in the intersection of any two
communities is upper bounded by a constant α, the number
of raw communities N0 is O(N), so the time complexity of
combining is O(N2). Therefore, the total time complexity
of Algorithm 2 is O(M +M logM +N2).

Lemma 2. The time complexity of Algorithm 3 is O(M).

Proof: First, time complexity of getting the median
of the set of weights is O(M). Next, because there are
M edges which require to compare with the median, the
time complexity of comparisons is O(M). Finally, the time
complexity of getting the difference set of the two edge sets
at time slot t− 1 and t is O(M). Therefore, the total time
complexity of Algorithm 3 is O(M).

For Algorithm 4-7, because they locally deal with the
network changes (including judging a new community and
combining the overlapped communities), the time complex-
ity of them is upper bounded by Algorithm 2.

Note that, comparing with [7], the time complexity of
Algorithm 2 is higher with order of O(M logM) because
of sorting the weighted edges.

APPENDIX E
DETAILED COMPARISONS AND OUR IM-
PROVEMENT
E.1 Comparisons
There exist some other methods and concepts [3], [4],
[34], [35] which may be confused with the definition
of our local activity and social similarity. We give the
detailed explanations so as to distinguish them and show
our improvement.

(1) In Simbet [3] and BUBBLE RAP [4], they use
betweenness centrality in data forwarding. Betweenness
measures the extent to which a node lies on the shortest
paths linking other nodes. A node with a high betweenness
centrality has a capacity of facilitating interactions between
the nodes that it links. However, there exist some problems.

• Betweenness centrality used in them is applied in
unweighted graphs, i.e., without considering contact fre-
quency. In unweighted graphs, there will be an edge if there

has a contact between two nodes at any time point t. But in
reality, the contact probability may be too low to be utilized
in data forwarding. That is to say, the relay may have no
contact with others in future, so, this delivering will lead
to an invalid transmission.

• Additionally, another problem in Simbet and BUB-
BLE RAP is using the global betweenness in entire or
partial phase of data forwarding. In BUBBLE RAP and
Simbet, the concept of community is explicitly or implicitly
considered. Each node has its belonging community(ies),
expect solitary nodes. If we deliver the message to a node
having high global betweenness, although it indeed has high
contact frequency with other nodes with respect to the entire
network, it may be in a community which is irrelevant to
or does not overlap with the destination community. On the
contrary, the nodes which have similar communities with
the destination, but have a little bit low global betweenness,
can be good enough as relays.

(2) In SocialCast [34] and IRA [35], a common problem
is that they use a form of simple weighted coefficient sum
to combine the interests and connectivity as the routing
guideline. This method makes the routing guideline (with
weighted coefficient) rely on the types of datasets. It is not
universal for all datasets and not convenient for popularity.
Additionally, the weighted coefficient sum method is also
too coarse and simple to reflect the combination relation-
ship of the interests and degree connectivity. Besides, there
exist other problems in SocialCast and IRA respectively.

• For SocialCast, it cannot deal with the overlapped
interests. For example, if node u has a, b, c three kinds
of interests, according to SocialCast, the nodes only with
interest a can be all chosen as relays. However, this raw
method leads to large numbers of copies to result in network
congestion and low delivery ratio. In practice, we require
to find the nodes that have more similar interests with the
destination.

• For IRA, the concept of community is proposed,
however, it is just used in finding coordinator nodes and
ambassador nodes when doing file searching and retrieval,
and it is not used in designing the routing algorithm. The
routing scheme in IRA is still similar with PROPHET
[12], although IRA considers file interests. They simply
use the encounter history to predict the future delivery
probability. This kind of algorithms is not as good as
community-based prediction algorithms in mobile social
networks. Because in social networks, nodes belonging to
the same community indicates they are more likely to meet
each other. To some extent, it can reflect social preference.
So, community structure is good at delivery prediction. The
similar demonstration appears in literature [4]. In addition,
in our data forwarding experiments (Section 5.3), we can
see, Bubble Rap and Nguyen’s Routing (community-based
algorithms in Fig.5 (d)) perform better than PROPHET
(noncommunity-based algorithms in Fig.5 (a)) in terms of
delivery ratio.

E.2 Our Improvement
Our method is different with aforementioned methods in
two aspects. First, in our paper, we concern about the

15

contact frequency. Our weighted social graphs are formed
according to contact frequency among nodes in Section 2.1
and Section 5.2. Then, when doing community detection,
we use communication critical value in Definition 4 to filter
the low contact frequency nodes. And in routing algorithm
LASS, our scheme is apt to choose the high local activity
nodes to avoid the low contact frequency nodes. Thus, the
improper relays with low contact frequency will not be
chosen. Considering contact frequency to form a weighted
social graph is one of essentials in our paper.

Second, we use the inner product of two forwarding
utilities as social similarity to design a data forwarding
scheme. In a forwarding utility, it includes the information
of local activity and the number of communities/interests.
We use the inner product method to choose a node that is
more similar with the destination than the current message
holder. The key point is that: the similar local activity in
similar communities with the destination.

We assume that node w is the destination node. There
exists a unicast session from node u to node w. The
candidate relay is node v. If the social similarity between
v and w is larger than u and w, there will be two facts
that can be proved. One, the candidate node v has more
common interests with the destination node w, i.e., the
number of non-zero vector component is large. The other,
referring to the destination node w, the candidate node v
has high local activity values on the corresponding non-
zero vector component. That is to say, in each vector
component, node v and w are more anastomotic. Reflected
in social networks, they are more similar in social aspects,
i.e., the interests groups and the local activity of node
v are proportionate to destination w. Intuitively, if the
destination is in Rugby Club and University Chorus-two
groups/communities, and the node local activity in Rugby
Club is larger than in University Chorus. Then, the node
that has the same characteristic with the destination is
more appropriate as a relay than that has not. Our inner
product method is universal for all kinds of datasets and
do not have to identify the different parameters. Besides,
the forwarding utility can handle a node with multiple
interests. Therefore, LASS aims at choosing both high local
activity and many common communities/interests with the
destination simultaneously.

In Section 5.3, we do experiments to validate the advan-
tage of our LASS, including comparisons with Epidemic,
PROPHET, Simbet, BUBBLE RAP, Nguyens Routing (for
SocialCast and IRA, we do not provide the comparisons,
because the former cannot deal with the overlapped interest-
s and the latters routing scheme is same with PROPHET).

APPENDIX F
DISCUSSION

We further explain several issues about our algorithm’s
designing and give some possible extensions for the future.

F.1 DataSets Selection

There exist many collections of social networks datasets,
such as CRAWDAD5, Haggle iMotes6 projects and Stan-
ford SNAP Graph Library 7. In above collections, Infocom
06 dataset, Sigcomm09 dataset, MIT Reality Mining dataset
and Facebook dataset will be found. Based on them, some
studies about relationship inference, behavior modeling
and prediction, complex social studies, and information
dissemination are carried out. These datasets can be clas-
sified into two kinds, one kind is the social friendship
information, the other is the social proximity information.
The former is about logical relationship, the latter is about
geographic relationship. In our study, because we concern
with the geographic encounter-based scenarios, the second
kind of data (using Bluetooth discovery to gain proximity
information) is appropriate for our experiments. In order to
observe the social impact on data forwarding, we choose a
long term observation-MIT Reality Mining Dataset as our
experiment dataset. Our algorithm can also be applied to
other datasets to validate it effectiveness.

F.2 Choice about the Communication Critical Val-
ue

With continual adding and removing actions, the commu-
nication critical value xt is generated by calculating the
median value of the weight set Wt at each snapshot. This
method can tackle both uniform and power-law distribution.
However, it may have some more precise mathematical
methods than ours to deal with the problem, which can
be studied in the future.

F.3 Edge Weight

In our study, the edge weight represents the encounter
probability between two nodes. The edge weight may be
concerned with mobility intensity, traffic interests or some
other physical/logical social properties. But it is not in the
scope of our research.

F.4 Bounds for Combining Criterion of Communi-
ties

Like [7], we also use experimental method to gain the
threshold for combining criterion of communities, i.e.,
Definition 8. But in theory, we could give the upper and
lower bound of it. The bounds meet two conditions, one
is that the community structure should satisfy the weighted
criterion of communities after combining, i.e., Definition
6; the other is if two communities can combine with each
other, we should try our best to do this. This theory bounds
will be studied in the future.

5. http://crawdad.cs.dartmouth.edu/
6. http://www.haggleproject.org
7. http://snap.stanford.edu/data/index.html

16

F.5 Efficient Way for Calculation of Local Activity
In our community detection method SAWD, we use both
“communication critical value” (Definition 4) and “weight-
ed criterion of communities” (Definition 6) to guarantee the
relative high weighted edges to form meaningful commu-
nities. Then, under these chosen communities, according
to the definition of local activity, a node with high local
activity can mean that it can connect all nodes in the
community tightly in high probability. However, there
indeed exists a kind of extreme and rare case to make
the definition of local activity look imperfect. For example,
there is a node, say u, in a community C. It only meets
another same community node, say v, extremely frequently
(i.e., only one edge in community C is weighted high, the
others are all weighted low). Then both node u and v have
high local activity in community C. In this case, u and
v will also be selected as a good relay for other nodes
in community C. But actually they only meet each other
frequently. Therefore, the current definition of local activity
cannot show that it connects all nodes in the community
tightly. In the future work, probably, when we define local
activity, an upper bond on the weight between two nodes
can further help alleviate the problem.

F.6 Fairness Issues of LASS
In relative short time period (a session), some centrality-
based social forwarding schemes indeed exist the problem
that some popular nodes (large centrality) may be frequent-
ly used as relay nodes. These popular nodes may be abused
and deplete the battery quickly, i.e., fairness issues of the
forwarding scheme. However, in our paper, the popular
node means a node having large social similarity with the
destination. That is to say, the popular node is required to
have not only a relative high local activity, but also more
number of communities where the destination node is in.
Therefore, comparing with precious centrality-based social
forwarding scheme, LASS has alleviated the abuse of the
popular nodes to some extent. We think that choosing the
popular nodes and considering battery depletion together is
worth to be studied in the future work.

APPENDIX G
PROS-AND-CONS OF LASS
For pros-and-cons of LASS, we need to emphasize that
our LASS is not the algorithm that uses long delay to gain
high delivery ratio. From Fig.5 (b) and Fig.5 (e), we can
see, if achieving the same number of successfully delivered
messages, except Nguyen’s Routing (we do not discuss it
because our delay is only higher than it 6.7 percent), the
other four comparison algorithms use far more relays than
LASS. Note that they are not in the same order. LASS is
only of 10 order, but the comparison algorithms are of 1000
or 10000 order. This is because LASS will not choose
an improper relay and make large numbers of copies in
relays. So, the main reason that leads to a little higher
delay of LASS is the number of relays of LASS is far
smaller than the other four comparison algorithms. It is

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

30min 1h 12h 1d 3d 1w 3w 1mon

de
liv

er
y

ra
tio

TTL

BUBBLE RAP
BUBBLE RAP with SAWD

Nguyen’s Routing
Nguyen’s Routing with SAWD

LASS

Fig. 12: Comparison results on BUBBLE RAP, Nguyen’s Routing and
LASS using SAWD detection method respectively.

not due to using long delay to gain high delivery ratio.
Besides, through analysis of experimental data, from Fig.5
(c) and Fig.5 (f), we can gain, comparing with Epidemic,
PROPHET, Simbet, BUBBLE RAP and Nguyen’s Routing,
the delay of LASS is only higher than them 28.2, 17.5,
25.6, 21.1, 6.7 percent on average respectively. Specially,
from Fig.10 (a) and Fig.10 (b), for the same delivery ratio,
except Epidemic (due to large numbers of copies), the delay
of LASS is smaller than PROHPHET, Simbet, BUBBLE
RAP and Nguyen’s Routing. Therefore, in conclusion, we
use a little higher delay to achieve a prominent delivery
ratio (some algorithms cannot achieve the delivery ratio
that LASS achieves) and a far lower overhead.

APPENDIX H
EXPERIMENTS FOR THE ROLE OF LOCAL AC-
TIVITY AND SOCIAL SIMILARITY OF LASS

In this section, especially, we use the same community
detection method SAWD in algorithms BUBBLE RAP and
Nguyen’s Routing respectively to test their performance
comparing with LASS. We want to verify, in our paper,
besides the good community detection method, considering
local activity and using social similarity to guide the routing
path are also the important elements in improving data
forwarding.

From Fig.12, we can see, in terms of delivery ratio,
when using the same community detection method SAWD,
both the performances of BUBBLE RAP and Nguyen’s
Routing are still poorer than LASS. LASS outperforms
BUBBLE RAP and Nguyen’s Routing with SAWD 37.47
and 23.24 percent respectively. Comparing with the results
in Section 5.3.4 (the delivery ratio of LASS is higher
than BUBBLE RAP with 46.18 percent, Nguyen’s Routing
with 34.64 percent on average), it validates that a good
community detection can influence the data forwarding to
some extent. Besides, it further verifies the important role
of local activity and social similarity in data forwarding for
MSNs.

17

 0

 15000

 30000

 45000

 60000

 75000

 90000

 105000

 120000

 135000

 150000

 165000

 180000

0.1 0.2 0.3 0.37

av
er

ag
e

la
te

nc
y(

se
cs

)

delivery ratio

Epidemic
PROPHET

LASS

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 180000

 200000

 220000

 240000

0.1 0.2 0.3 0.34

av
er

ag
e

la
te

nc
y(

se
cs

)

delivery ratio

Simbet
BUBBLE RAP

Nguyen’s Routing
LASS

(a) (b)

Fig. 10: Fig(a) and Fig(b) show the different average latency in different delivery ratio (achievable lower bound) for five comparison algorithms
respectively.

1h 30min 10min
0

0.2

0.4

0.6

0.8

1

Packet Generation Rate (Time/Packet/Node)

de
liv

er
y

ra
tio

n

LASS
Nguyen’s Routing
BUBBLE RAP
Simbet

5M 3M 1M
0

0.2

0.4

0.6

0.8

1

Buffer Size

de
liv

er
y

ra
tio

n

LASS
Nguyen’s Routing
BUBBLE RAP
Simbet

(a) (b)

Fig. 11: Comparison results under different parameter settings. Figure(a) differs the packet generation rate. Figure(b) differs the buffer size.

APPENDIX I
EXPERIMENTS UNDER DIFFERENT PARAME-
TER SETTINGS
In this section, we choose different parameters to test the
performance of LASS and other social-based methods. The
packet size is 100KB.

First, under 5MB buffer size, we change the packet
generation rate from 1h per packet per node to 10min
per packet per node. Fig.11(a) shows the result. When the
workload increases, all methods have lower packet declivity
ratio. However, they change at different rates. When the
packet generation rate is 1h per packet per node, the
delivery ration of LASS is higher than Nguyen’s Routing
with 24 percent. When the rate increases to 10min per
packet per node, the delivery ration of LASS is higher than
Nguyen’s Routing with 39 percent. This means that LASS
is more efficient under high workloads.

Second, under 30min per packet per node, we change
the buffer size from 5MB to 1MB. Fig.11(b) shows the
result. When the buffer size decreases, all methods have
lower packet declivity ratio. However, they change at d-
ifferent rates. When the buffer size is 5MB, the delivery
ration of LASS is higher than Nguyen’s Routing with 37
percent. When the buffer size is 1MB, the delivery ration
of LASS is higher than Nguyen’s Routing with 41 percent.
This means that LASS is efficient under small buffer size.

APPENDIX J
RELATED WORK
On the one hand, some studies have shown that exploiting
social relationships can achieve better data forwarding

performances (our work is belonged to this kind). Daly and
Haahr [3] proposed SimBet data forwarding algorithm in
delay tolerant MANETs. It uses betweenness centrality and
social similarity to increase the probability of a success-
ful data forwarding. Authors show that SimBet performs
well, especially when the connectivity is low. However, it
does not consider contact frequencies between node pairs.
Hui et al. [4] proposed an algorithm called BUBBLE
RAP in DTNs, with making use of node centrality and
weighted k-clique community structure to enhance delivery
performance. It is better than Daly and Haahr [3]. But it
needs to give a priori value of k to identify meaningful
community structure, which is impractical in mobile social
networks. Moreover, it has the same problem with [3], i.e.,
using betweenness to calculate global and local centrality,
without considering node encounter probability. Gao et al.
[5] studied multicast in DTNs from the social network
perspective. With known community structures, authors for-
mulates the relay selection as a unified knapsack problem.
But this method assumes that community structures are
already known and some parameters’ optimization requires
global information to support. Fan et al. [31] studied
a geo-community-based broadcasting scheme for mobile
social networks by exploiting node geo-centrality and geo-
community. Nguyen et al. [7] proposed an overlapping
community based data forwarding algorithm, called N-
guyen’s Routing. An efficient community detection method
is designed for tracing the evolution of the overlapping
communities in mobile networks. Taking advantage of the
overlapping community structure, Nguyen’s Routing uses
the number of common interests as social similarity to

18

design data forwarding scheme. However, it only focuses
on the binary graph and does not consider the node local
activity.

On the other hand, from another perspective, some
studies have demonstrated the social relationships limit the
freedom transmission between two nodes. Li et al. [6]
introduced socially selfish properties into data forwarding
scheme in delay tolerant networks, where protocol SSAR
considered both users’ forwarding willingness and their
contact opportunity. Li et al. [8] studied a joint rate control,
routing, and capacity allocation scheme to achieve optimal
multirate multicast in dynamic wireless networks, which

addressed social selfishness of users by differentiating relay
costs towards different destinations. Lin et al. [9] proposed
a PrefCast algorithm. It considers users’ heterogeneous
preferences for different content objects in mobile social
dissemination, and meanwhile produces the maximal total
utility for all users. Wu et al. [10] proposed a social feature-
based multipath routing scheme in DTNs. It is based on
the idea that the social features will play an important role
in data forwarding in social contact networks. Finally, the
scheme makes the routing problem become a hypercube-
based feature matching process.

