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ABSTRACT In this paper, we mainly study the data transport capacity of mobile networks for mobile social
services. Specifically, mobile ad hoc social networks (MAHSNs) with infrastructure support are considered
the carrier networks. InMAHSNswith infrastructure support, the underlying physical networks and the upper
social relationship networks interact with each other and influence the capacity of this hybrid mobile social
communication carrier network together. For the physical networks, we introduce a more practical clustered
model to depict the social behavior of users. We consider a virtual home point for each mobile user. For the
upper social relationship networks, we propose an improved population-based model, in which we map the
home points of the mobile users into the social relationship formation, to solve the social formation problem
in the mobile environment. This process comprehensively considers the clustering levels of the degree of
friendship and friendship distribution. Finally, from a layered networking perspective, the geographical
distribution of the social traffic sessions is analyzed to derive the capacity for social-broadcast sessions of
MAHSNs with infrastructure support. The results provide deep insights into the impacts of a user’ mobility
pattern and social relationship formation on the capacity of MAHSNs with infrastructure support.

INDEX TERMS Mobile ad hoc social networks, infrastructure support, capacity, social-broadcast.

I. INTRODUCTION
With the development of wireless communication technology
and the popularity of mobile devices, an increasing number of
social applications, such as WeChat, Facebook, and Twitter,
have been exploiting smartphones and mobile notepads as
their application terminals. On March 13th, 2014, the science
and technology medium uTest indicated that the number of
users of mobile APPs was greater than that of PCs for the
first time. Obviously, mobile devices have become the main
internet browsing terminal in the U.S., and the popularity of
mobile social services continues to increase.

In mobile social services, various social applications run
on certain types of mobile social carrier networks. In this
paper, we take mobile ad hoc social networks (MAHSNs)
with infrastructure support as a case study. Under this hybrid
mobile communication carrier network, the infrastructure
support presents certain advantages, such as high efficiency
and centralized management, and the ad hoc way plays an
important part in backbone offloading and privacy preserving.

Therefore, based on a hybrid communication architecture,
it is worthwhile to investigate the fundamental limits of sys-
tem performance, i.e., the optimal achievable performance.
In this work, we primarily study the network capacity, which
is a basic performance metric of the fundamental limits for
data dissemination in MAHSNs with infrastructure support.

The capacity of MAHSNs with infrastructure support
depends on the geographical characteristics of data dis-
semination sessions, i.e., the spatial distribution of traffic
sessions. Compared with the general studies of wireless
network capacity, social user mobility patterns in MAH-
SNs with infrastructure support will impact the formation
of social relationships, and then the social relationships will
influence the distribution of traffic sessions in the coupled
network system [1], [2]. In this study, a particular chal-
lenge is: How to analyze the impacts of both users’ behavior
patterns and social relationships on the network capacity
in the mobile environment under the hybrid communication
architecture?
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To solve this problem, we introduce a three-layered social
network model [3]. The model presents a layered perspective
for the social networks, consisting of a physical network
layer, a social relationship layer and an application session
layer, as shown in Fig. 1. Next, we formulate the correspond-
ing models and show the correlations among the three layers.

FIGURE 1. Three-Layered Model [3].

A. PHYSICAL NETWORK LAYER
In mobile networks for mobile social services, mobile users
usually form several social groups/clusters. To express the
clustering phenomenon [4], we introduce a clustered model
(m(n), r(n)) [5]–[7], in which n denotes the number of users,
m(n) and r(n) represent the number and the radius of clusters,
respectively. For each user, we consider an important concept
of home point, which is proposed by Garetto et al. [5] firstly.
This concept is established according to the frequency of
users’ check-ins. The home point of a certain user represents
the position of the maximal active probability of this user.
Moreover, we define a tension coefficient η(n) = n$ to
express the degree of mobility strength, where $ ∈ [0, 1/2]
is the tension exponent. Combining the network physical
extension and the communication capability of node itself,
we depict two cases, a strong mobility and a weak mobility,
for MAHSNs with infrastructure support.

B. SOCIAL RELATIONSHIP LAYER
According to the milestone study about the formation of
social relationships [3], the distribution of a user’s friends
is related to the population density around this user in a
particular distance. To be specific, the distribution obeys the
population-based model P(δ, γ, β), where δ ∈ [0,∞) repre-
sents the clustering exponent of node distribution, γ ∈ [0,∞)
represents the clustering exponent of friendship degree and
β ∈ [0,∞) represents the clustering exponent of friendship
formation. However, this formation model is only for static
online social networks. In our paper, we propose an improved
population-based social formation model. In the improved
model, we let the stable home points of the mobile users
map into the social relationship layer. Further, we let the
mobile user independently choose its friends according to
the population-based density function. It is important and
effective that we use the underlying virtual home points to

solve the social formation problem in a dynamic environment.
The social formation model of static users [3], [8], [9] is
extended to mobile users.

C. APPLICATION SESSION LAYER
In mobile social applications, the most common scenario is
that a person sends a message to all of his/her friends, such
as posts on Facebook, Foursquare, Sony PS Vita-Near Game.
Therefore, with respect to this application scenario, we study
a typical traffic session, called social-broadcast, under which
the source sends messages to all its friends formed on the
basis of the improved social formation model. In the hybrid
underlying architecture, the session occurs either via a node
multi-hop between the source and its friends or via one hop
to the base station backbone.

Under the three-layered system model, the contribution of
our work can be summarized as follows:
• To derive the spatial distribution of traffic sessions in

MAHSNs with infrastructure support, we construct a
reasonable and practical model for mobile users rela-
tionship formation by introducing the home point pol-
icy in the clustered model. It improves the shortage
caused by the impractical assumption of static and
uniform nodes.

• To the best of our knowledge, this is the first work
to investigate the capacity of MAHSNs with infras-
tructure support. We obtain the main results of the
capacity for the networks. Besides, we also make
research on the relationship between the capacity and
the coefficient γ, β in the population-based model
P(δ, γ, β). Through theoretical analyses and extensive
simulations, we have concluded that a larger γ and a
larger β can contribute to a larger network capacity for
MAHSNs with infrastructure support.

• We use true data to validate the heterogeneous mobility
and adopt the popular simulator to validate our the-
oretical results. The experiments not only verify the
correctness of our theoretical results, but also bridge
the math and the real with practical intuitions.

The rest of this paper is organized as follows. In Section II,
we review previous studies and highlight the difference
between our work and the related ones. In Section III,
we construct each layer in the three-layered system model of
MAHSNs with infrastructure support. In Section IV, we lay
the basis for our subsequent proofs. Based on two differ-
ent types of mobility cases, in Section V and Section VI,
we obtain the social-broadcast capacity for strong and weak
mobility cases from the ad hoc way and the cellular way,
respectively. In Section VII, we do experiments to demon-
strate the heterogeneous mobility phenomenon and validate
the theoretical network capacity results. Finally, we conclude
the paper in Section VIII.

II. RELATED WORK
In previous studies of wireless network capacity, the ground-
breaking work was Kumar and Gupta’s research [10].
They showed that the per-node throughput is of order2( 1

√
n )
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when n → ∞. Then, to improve the network capacity,
Grossglauser and Tse [11] made great progress by con-
sidering mobility. They proposed the store-carry-forward
scheme to make the per-node capacity sustain the order
2(1). Although it ignored delay, their work told us that
mobility can improve the network capacity. Later, researchers
studied many different mobility models for network perfor-
mance analyses, such as the random walk mobility model
[12], the Brownian mobility model [13], the random way-
point mobility model [14] and restricted/local mobility
models [5], [7].

In addition to the mobility, infrastructure (in the hybrid
network) is another intuitive way of increasing the net-
work capacity. Liu et al. [15] proved that infrastructure
could offer a linear capacity increase in hybrid network,
when the number of base stations increased asymptotically
faster than

√
n. Kozat and Tassiulas [16] proved that if the

number of users served by each base station was bounded
above, a per-node capacity of 2( 1

log n ) could be achieved.
Agarwal and Kumar [17] further extended this result to2(1).
X-Y. Li et al. studied the multicast capacity in a static
hybrid network by constructing a hybrid multicast routing
tree [18], [19]. Wang et al. [20] studied the multicast capac-
ity for hybrid wireless networks under Gaussian channel
model. Depending on the number of base stations, nodes
and destinations, the work analyzed the achievable multi-
cast throughput in detail by selecting the optimal scheme.
Recently, Qian et al. [6] and Huang et al. [21] studied the
unicast and multicast capacities in a hybrid network under
the clustered mobility model.

The above studies all focused on the general static/mobile
wireless networks. They did not consider the effects of
social interactions among nodes. The social network was first
studied by Milgrams’ experiments [22]. Later, Kleinberg [8]
proposed a distance-based social model. After that,
Liben-Nowell et al. [9] indicated that this model underesti-
mated the inhomogeneity of users’ geographical distributions
and proposed a rank-based model. Recently, Wang et al. [3],
in a milestone work, proposed a new social relationship
formation model, called the population-based model. This
model takes both distance and density into account and
addressed the issue of network capacity for online social
networks.

All in all, recent years have witnessed the popularity of
mobile social services. It is significant for us to study the
capacity of mobile networks for these services. From above
studies, we can see that previous work on the capacity of
general wireless networks does not consider the social rela-
tionship. Besides the latest studies on the capacity of wireless
networks for mobile social services [3], [23], [24] are limited
in using the ad hoc way in the static environment. To the best
of our knowledge, our paper is the first work to study the
capacity of mobile networks for mobile social services under
the hybrid communication architecture.Mobility, social rela-
tionship and hybrid communication architecture are three
important factors of our paper.

Especially, partial results of this work have been presented
in our conference paper [25]. The difference between them
is mainly in the communication architecture of the under-
lying carrier networks for mobile social services. The con-
ference paper studies the social-broadcast capacity under the
mobile ad hoc social networks (MAHSNs). This paper further
extends the study to MAHSNs with infrastructure support.
To be specific,

1) In this paper, we present some new results and related
proofs of the social-broadcast capacity in MAHSNs
with infrastructure support, including the upper and
lower bounds analyses for strong and weak mobility
cases through hybrid routing, respectively (Sec. V-C
and Sec. V-D).

2) In this paper, we add extensive evaluations in a new
Section VII. These experiments demonstrate the het-
erogeneousmobility and the theoretical capacity results
derived in the paper.

3) In this paper, we add the construction method of the
social relationship layer by using the home points in
detail (Sec. III-B).

4) The contribution and the related studies of this work are
rewritten.

III. SYSTEM MODEL AND ASSUMPTION
In this section, we build the physical network layer, social
relationship layer and application session layer respectively.
We also provide the definition of the network capacity and
introduce a special case for the clustered model.

A. PHYSICAL NETWORK LAYER
As shown in Fig. 1, the bottom layer in our model is
the physical network layer. In this layer, we construct the
mobility model and the communication model to depict the
underlying physical architecture of mobile ad hoc social net-
works (MAHSNs) with infrastructure support.

1) MOBILITY MODEL
To model the MAHSNs with infrastructure support, the net-
work area is treated as a torusOwithwrap-around conditions,
and n wireless users move on its surface and m static base
stations form the network backbone. Let Xi(t) denote the
position of ith mobile user at time t; let Yi(t) ≡ Yi denote the
position of ith base station. When referring to both mobile
users and base stations, we use notations Zi(t), 1 ≤ i ≤
n + m to label their positions. In this paper, we normalize
the network area to 1 for convenience.

We assume that the bandwidth of the wireless channel is
W and the bandwidth of the wired links among base stations
is Wbase. Further, we divide the wireless resource W into
uplink bandwidth Wup and downlink bandwidth Wdown.

The mobility of users has been reported to present a
spatially inhomogeneous property [6], [7], [21]. Long-term
tracing experiments [26], [27] indicate that a user most often
moves in a certain small region. It moves far away from this
region with low probability. This phenomenon reflects the
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mobility restriction. Moreover, researchers found that some
users like to aggregate in some areas. User density is higher
in these aggregated areas and lower in other areas. It causes
an uneven density distribution. This inhomogeneous phe-
nomenon is evident particularly in the mobile social services
due to the social relationships among users.

In order to describe the inhomogeneity, we give the follow-
ing assumptions and settings.
• First, according to users’ mobility restriction, we

assume that each mobile user vi has a home point,
which is denoted by Xhi and is located in the center
of the small region. Xhi represents the position of the
maximal active probability for mobile user vi. Besides,
we let the home point of the base station to be its static
position.

• Second, we define a tension coefficient η(n) = n$ to
express the degree of mobility strength, where $ ∈
[0, 1/2] represents the tension exponent [7]. The ten-
sion can be seen as the pull of a rubber band that is
fixed at the home point. When the tension coefficient
is large, the pull of the rubber band is strong, which
makes it difficult for the mobile user to move far; thus,
the mobility is considered weak. On the contrary, when
the coefficient is small, we consider the mobility to
be strong. The tension coefficient reflects the node’s
ability to move away from its home point.

• Then, we characterize the density function of mobile
user vi around Xhi by a function φi(X ),

φi(X ) = φ(X − Xhi ) =
s(η(n)‖X − Xhi ‖)∫

O s(η(n)‖X − Xhi ‖)dX
,

where s(η(n)‖X − Xhi ‖) represents a non-increasing
continuous function and ‖X − Xhi ‖ denotes the
Euclidean distance between mobile node vi and its
home point.

• Finally, we introduce a clustered model [5]–[7],
denoted by a two-tuples (m(n), r(n)), in which m(n) =
2(nε) denotes the number of clusters, with ε ∈ [0, 1]),
and r(n) = 2(n−%) denotes the radius of a cluster,
with % ∈ [0,∞). Especially, when m(n) = n, it is
a special case. We cast m(n) cluster centers to the
network area uniformly and independently with the
radius r(n). Then, n home points are randomly assigned
to these clusters uniformly. After that, we make each
mobile node match to its home point correspondingly.
Therefore, each mobile node can belong to the different
clusters. For convenience in the paper, we place m base
stations regularly in the network area.

2) MOBILITY DEGREE AND COMMUNICATION
The defined tension coefficient shows that the intensity of
node mobility is different. Some mobile users can move far
away from their home points to transmit messages, but some
only can move near around the home points. To combine
the intensity of node mobility with network communication,

mobility can be divided into two cases: a strong mobility case
and a weak mobility case [7].
We first define a critical transmission range τ (n). It stands

for the minimal transmission range that would guarantee
network connectivity in the case that the nodes remain at
their home points. According to the clustered model, we have
τ (n) =

√
log(m(n))/m(n).

We then define two types of mobility cases as follows:
Case 1: When τ (n) = o

(
1

η (n)

)
, we consider it as a strong

mobility case.
From the density function φi(X ), we know that the denomi-

nator
∫
O s(η(n)‖X−Xhi ‖)dX is of order 1

η(n)2
. So the mobility

of the mobile user is roughly limited to radius of 2
(

1
η(n)

)
.

In this case, it is sufficient for the critical transmission range
to reach 1

η (n) . Thus, mobility plays an important role in
exchanging data, and this case can take full advantage of
mobility to improve the network capacity asmuch as possible.

Case 2: When τ (n) = ω
(

1
η (n)

)
, we consider it as a weak

mobility case.
In this case, the critical transmission range must have to

reach 1
η (n) at least. Here, because the nodes do not move far

away or remain still, the effect of mobility on the network
performance is reduced. The network connectivity mainly
depends on the transmission range of each node instead of
the node mobility.

3) INTERFERENCE MODEL
In the paper, we introduce the interference model from liter-
ature [10]. We use {Xk (t); k ∈ T } to represent the subset of
nodes simultaneously transmitting at time t , and notation T
denotes a set of node subscripts. A successful transmission
will take place from node vi to vj at time t only if:

SINR =
P

‖Xi(t)−Xj(t)‖α

N0 +
∑

k∈T ,k 6=i
P

‖Xk (t)−Xj(t)‖α
≥ ξ,

where N0 is the ambient noise power at the receiver, P is the
transmission power level, α > 2 is a signal attenuation factor
and ξ represents the minimum value of SINR needed for a
successful reception at destination node vj.

B. SOCIAL RELATIONSHIP LAYER
The middle layer is the social relationship layer. In this layer,
we make some improvements on this model according to
the population-based model proposed in the online social
networks [3], to accommodate MAHSNs with infrastructure
support.

From the physical network layer, we know that users are
mobile and non-uniform; however, the home point of each
user is relatively stable. Therefore, we map these home points
into the social relationship layer. Thus, each mobile user vi in
the physical network layer can correspond to a stable home
point in the social relationship layer. This improvement is
important for us to apply the population-based social forma-
tion model into our mobile social environment. Next, we will
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construct the improved population-based social formation
model and provide some useful conclusions.
• Degree Distribution of Social Relationships
Let qi denote the number of friends of user vi. Pre-

vious study [3] indicates that qi obeys Zif’s distribution,
i.e., Pr(qi = l) = (

∑n−1
j=1 j

−γ )−1 · l−γ , where γ represents
the clustering exponent of friendship degree, and l ∈ N+.
• Density Function for Choosing Friends
Let the position of user vi represent the reference point.

Then we choose qi points independently in the torus regionO
according to a probability distribution. Previous study [3]
indicates that the probability that a point pik will be chosen
as a candidate friend point of user vi, satisfies a probabil-
ity function with [N (vi, |pik − vi|) + 1]−β , where β repre-
sents the clustering exponent of friendship formation, and
N (vi, |pik −vi|) denotes the number of home points contained
in the circle region with radius |pik − vi|. We let {pik }

qi
k=1

denote the set of these qi points. Fig. 2 illustrates the process
of selecting a candidate friend point pik for user vi.

FIGURE 2. Choosing friend points.

FIGURE 3. Nearest principle.

Finally, using the nearest principle, for each point in set
{pik }

qi
k=1, we pick a home point that is nearest to point pik .

So we can independently determine qi corresponding mobile
users (associating with qi home points) as the friends of user
vi as shown in Fig. 3.

C. APPLICATION SESSION LAYER
The upper layer is the application session layer. In this layer,
different applications determine different social sessions.

FIGURE 4. Construction of social relationship layer.

In this paper, we study a common session pattern, called
social-broadcast, in which the source node sends packets to
all its friends. From the model, we know that one source
node vi has qi friends. Therefore, under the social-broadcast,
the source node vi will deliver messages to all its qi friends
with equal probability 1, as shown in Fig. 4.

We denote a set of communication nodes moving in the
network O by V = {v1, v2, ..., vi, ..., vn}. The correspond-
ing home points for all nodes is denoted by a set X h

=

{Xh1 ,X
h
2 , ...,X

h
i , ...,X

h
n }.

Then, we define a social-broadcast session as Si :=
{vi} ∪ Fi, where vi represents the source node and Fi rep-
resents the set of vi’s friends, with Fi = {vik }

qi
k=1 [3].

Correspondingly, we have a social-broadcast session
notated by home points as follows: S ′i := {Xhi } ∪
X h
ik , F , where the set X h

ik ,F = {Xhi1,F ,X
h
i2,F , ...,X

h
iqi ,F
}

represents the home points of all friends of source
node vi.

D. NETWORK CAPACITY FOR SOCIAL SESSIONS
For all social sessions, we suppose that packets arrive at each
node at a rate of λ packets per time-slot. The network is
stable if and only if there exists a scheduling scheme which
can guarantee the queue in each node does not increase to
infinity as time goes to infinity. Thus, the per-node capacity
of a network is the maximum arrival rate λ that the network
can stably support.

E. SPECIAL CASE FOR CLUSTERED MODEL
In this work, we concentrate on studying a special case
in which the home points of the mobile users are dis-
tributed uniformly and independently in the area. In this
special case, we derive the number of clusters m(n) = n
and we also have τ (n) =

√
logm(n)/m(n) =

√
log n/n.

Correspondingly, in the population-based model P(δ, γ, β),
the clustering exponent δ of the node distribution is equal
to zero. Thus, we specifically reduce the complexity from
three dimensions (δ, γ, β) ∈ [0,∞)3 to two dimensions
(γ, β) ∈ [0,∞)2. In the future, we will study the general
case in which m(n) = 2(nε), ε ∈ [0, 1), and δ 6= 0.
For convenience, we list some mainly used notations in
TABLE 1.
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TABLE 1. Main notations used in this paper.

IV. PRELIMINARIES OF SOCIAL-BROADCAST CAPACITY
IN MAHSNS WITH INFRASTRUCTURE SUPPORT
To improve the network capacity, we select the ad hoc rout-
ing and the cellular routing adaptively. In Section V and
Section VI, we will obtain the capacity of the networks from
both the ad hoc and the cellular perspectives.
Lemma 1 [6]: Suppose that {Zhi , 1 ≤ i ≤ n + m} is

deployed onO according to (m(n), r(n)) clustered model. The
area ofO is divided by regular tessellations. Each tessellation
element has the area of |Ates| ≥ (16 + ζ )τ 2(n), for some
small ζ > 0, and defined with Nh(Ates) the number of
home points for both base stations and mobile users inside
Ates, then uniformly over the tessellations w.h.p. Nh(Ates) is
between n|Ates|

2 and 2n|Ates|, i.e.,
n|Ates|

2 < infNh(Ates) ≤
supNh(Ates) < 2n|Ates|.
Definition 1 (Link Capacity [6]): The link capacity bet-

ween node vi and vj is defined by the maximal long term data
flow between them:

µS
ij = E[1(i,j)∈πS (t)|Fij],

where πS (t) is a selected set of node pairs that can simulta-
neously transmit at time t under a stationary ergodic schedul-
ing scheme S; and Fij is the Borel-field generated by the
home points of base stations and mobile users. Link capacity
represents the maximal traffic flow between node vi and
node vj.
Lemma 2: A network is divided into two regions

IL and EL by using an arbitrary simple, regular and closed
curve L. According to the Maximum Concurrent Flow prob-
lem over the associated Generalized Random Geometric

Graph (GRGG) [5], we have

λ ≤

∑
i:Xhi ∈IL

∑
j:Xhj ∈EL

µij∑
s:Xhs ∈IL

∑
d :Xhd∈EL

λsd
,

where the denominator represents the number of social-
broadcast flows passing through the curve L; and the
numerator represents the maximum total traffic crossing the
curve L.

V. SOCIAL-BROADCAST CAPACITY FOR
STRONG MOBILITY CASE
In this section, we consider a social-broadcast session Si :=
{vi}∪Fi. We also have the corresponding home point session
S ′i := {Xhi } ∪ X h

ik ,F . We discuss the strong mobility case

under the condition τ (n) = o
(

1
η(n)

)
. In this case, we first give

the upper and lower bounds of the social-broadcast capacity
from the ad hoc perspective (Theorem 1 and Theorem 2);
we then obtain a tight bound of social-broadcast capacity
from the ad hoc perspective (Theorem 3); we next describe
the upper and lower bounds of social-broadcast capacity
from the cellular perspective (Theorem 4 and Theorem 5);
finally, we obtain a tight bound of social-broadcast capacity
by hybrid routing (Theorem 8).

A. SOCIAL-BROADCAST CAPACITY FOR STRONG
MOBILITY CASE FROM AD HOC PERSPECTIVE
1) UPPER BOUND
We introduce a proper scheduling scheme S] under the strong
mobility case. In previous studies, especially those using
mobility to increase the overall capacity, the transmission
range can not be increased too much because it incurs sub-
stantial interference over the possible concurrent transmis-
sions. Therefore, the transmission range should be reduced
to an appropriate value that can both guarantee the network
connectivity andmaximize the overall capacity. Based on pre-
vious research, we choose RT = 2( 1

√
n ) as the transmission

range in the strongmobility case.When two nodesmove close
to each other at a distance of 2( 1

√
n ), they can exchange data

directly.
Definition 2 (Scheduling Scheme S]): Given a network

O comprising n ad hoc nodes moving on its surface, schedul-
ing scheme S] enables transmission between node vi and
node vj when the following conditions are satisfied:

dij(t) < RT =
c1
√
n
,

min(dkj(t), dki(t)) > (1+1)RT ,

where dij(t) denotes the Euclidean distance between the home
points of nodes vi and vj at time t; c1 is a constant. This
scheme is similar to the Protocol Model. For every other node
vk in the simultaneously transmitting, the quantity

a
is a

guard zone that prevents simultaneous transmission in this
guard area.

In the physical network layer, the mobility models built
in this paper and in literature [6] are all home point based
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models. It has been proved in literature [6] that the schedul-
ing scheme S] which uses 2( 1

√
n ) as transmission range for

mobile users is optimal.
Lemma 3 [5]: In strong mobility case τ (n) = o( 1

η(n) ),
under the scheduling scheme S], for any pair of nodes (i, j)
and any finite c1 > 0, we have the link capacity

µS]
ij = 2(Pr{dij ≤

c1
√
n
|Fij}),

where dij denotes the Euclidean distance between the home
points of nodes vi and vj.
From the derivation in literature [5], we further obtain:

µij = 2(Wg(n)θ (η(n)‖Xhj − X
h
i ‖)),

and∑
i:Xhi ∈IL

∑
j:Xhj ∈EL

µij

≤ Wn2g(n)
∫
X∈IL

∫
Y∈IL

θ (η(n)‖X − Y‖)dXdY ,

where g(n) = πc21
η2(n)
n and θ (‖Y‖) =

∫
X∈R s(‖X −

Y‖)s(‖X‖)dX.
Lemma 4 [5]: Under the assumption

∫
x3θ (x)dx < ∞,

for any convex, simple, regular, closed curve L, we have

η2(n)
∫
X∈IL

∫
Y∈EL

θ (η(n)‖X − Y‖)dXdY = 2(
1
η(n)

).

Theorem 1: Given a networkO consisting of n mobile ad
hoc nodes, in strong mobility case, the upper bound of per-
node social-broadcast capacity can be achieved by

λ = O
(

Wn
H (γ, β)η(n)

)
.

Proof: Let lb,a denote the side of the ath edge of the bth
social-broadcast session. The probability that lb,a will pass
through L (Lemma 2) is lb,a cosψb,a, with ψb,a representing
the horizonal angle of lb,a.
A random variable εb,a is defined as follows:

εb,a =

{
1 when lb,a crossing L,
0 when lb,a without crossing L.

The number of social-broadcast flows crossing L is
denoted by

NL =
∑

s:Xhs ∈IL

∑
d :Xhd∈EL

λsd .

The source node vi has qi friends, in which qi is a variable
that obeys Zif’s distribution defined in Section III-B. Here,
we can obtain

NL = E(
n∑

b=1

qi∑
a=1

εb,a) =
n∑

b=1

qi∑
a=1

E(εb,a)

=

n∑
b=1

qi∑
a=1

lb,a cosψb,a.

Then, using Lemma 6 in literature [3], the length of all
sessions in the population-based model is

n∑
b=1

|EMST (S ′b)| = �(H (γ, β)),

where EMST denotes the Euclidean Minimum Spanning
Tree, and H (γ, β) is a sectional function. The value of
H (γ, β) is approximately of the order n, which varies with
different values of γ and β. We list the results of H (γ, β) in
TABLE 2.

TABLE 2. H(γ, β) in bounding
∑

EMST [3].

Thus, we have

NL =
n∑

b=1

qi∑
a=1

lb,a cosψb,a ≥ H (γ, β).

Through using the results in Lemma 3 and Lemma 4,
we obtain the upper bound for strong mobility case via the
ad hoc way,

λ ≤

∑
i:Xhi ∈IL

∑
j:Xhj ∈EL

µij

NL

≤
Wn2g(n)

∫
X∈IL

∫
Y∈IL

θ (η(n)‖X − Y‖)dXdY
H (γ, β)

.

Finally, we have

λ = O

(
Wnπc21

H (γ, β)η(n)

)
= O

(
Wn

H (γ, β)η(n)

)
.

�
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2) LOWER BOUND
In the strong mobility case, we divide the area of O into
regular tessellations with the side length c2

η(n) , where c2 is
a constant. The side length can satisfy the condition of
Lemma 1 which guarantees that each tessellation has home
points. The side length is equal to the mobile radius being
of order 2( 1

η(n) ). This length drives nodes to meet each
other with high probability in two adjacent tessellations under
scheduling scheme S].
We introduce the Manhattan Multicast Routing Tree in

literature [7], [28] as the routing policy. We adopt this policy
to construct a social-broadcast tree in virtue of the home point
of eachmobile user. The home points of adjacent tessellations
use scheduling scheme S] to make the associated nodes
transmit data.
Lemma 5: In the strong mobility case, the probability of a

social-broadcast flow going through a given tessellation Ates
is

min

(√
2c2H (γ, β)
η(n)

+
Q(γ )c22
η2(n)

, 1

)
.

Proof: Let l denote the length of a social-broadcast
flow. Then let this flow map into the horizontal and vertical
projects, which are defined by lh and lv, respectively. In the
strong mobility case, the side length of Ates is defined as
c2
η(n) above. Thus, we can derive the probability of this social-
broadcast flow going through the Ates by Pr(l,Ates), having

Pr(l,Ates) =
c22
η2(n)

(
lh + lv

c2
η(n)

+ 1

)
=
c2(lh + lv)
η(n)

+
c22
η2(n)

.

From above equation, we have

c2(lh + lv)
η(n)

≤

√
2c2l
η(n)

.

Then, with all social-broadcast sessions, we have

Prall(l,Ates) ≤

√
2c2

∑n
i=1 |EST (Si)|
η(n)

+
2
∑n

i=1 qic
2
2

η2(n)
.

Using Lemma 9 in literature [1], the length of
EST (Euclidean Spanning Tree) satisfies

n∑
i=1

|EST (S ′i)| = O(H (γ, β)).

We can obtain the order of the number of all nodes’ friends,
denoted byQ(γ ), from the proof of Lemma 6 in literature [1],
having

Q(γ ) =
n∑
i=1

qi =



2(n), γ > 2;
2(n log n), γ = 2;
2(n3−γ ), 1 < γ < 2;
2(n2/ log n), γ = 1;
2(n2), 0 ≤ γ < 1.

Therefore, we can obtain

Prall(l,Ates) = min

(√
2c2H (γ, β)
η(n)

+
Q(γ )c22
η2(n)

, 1

)
.

�

Theorem 2: Given a networkO consisting of n mobile ad
hoc nodes, in strong mobility case, the lower bound of per-
node social-broadcast capacity can be achieved using the
scheduling scheme S] as follows,

λ = �

(
Wn

H (γ, β)η(n)+ Q(γ )

)
.

Proof: Assume Ates and Btes are adjacent tessella-
tions. Let N h(Ates) and N h(Btes) represent the lower bound
of the number of mobile users whose home points fall in
Ates and Btes, respectively.

Since τ (n) = o( 1
η(n) ), through Lemma 1, we have

N h(Ates) = N h(Btes) =
c22n

4η2(n)
.

Thus, we have the feasible maximal traffic flow between
two adjacent tessellations, which is denoted by

µS] (dAtes,Btes ) · N h(Ates)N h(Btes).

Since dAtes,Btes =
√
5c2
η(n) , using the results in Lemma 3,

we have

µS] (dAtes,Btes ) = Wg(n)θ (
√
5c2) = Wπc21

η2(n)
n

θ (
√
5c2).

From Lemma 5, we know that the maximal load is

O(

√
2c2H (γ, β)
η(n)

+
Q(γ )c22
η2(n)

).

Then, we have the lower bound for strong mobility case via
the ad hoc way,

λ ≥

∑
Ates∈IL

∑
Btes∈EL µ

S] (dAtes,Btes ) · N h(Ates)N h(Btes)
√
2c2H (γ,β)
η(n) +

Q(γ )c22
η2(n)

.

Finally, we can derive

λ = �(
Wn

H (γ, β)η(n)+ Q(γ )
).

�

B. THE COMPARISON BETWEEN THE UPPER BOUND
AND LOWER BOUND FOR STRONG MOBILITY CASE
FROM AD HOC PERSPECITVE
From Theorem 1 and Theorem 2, we can see the difference
between the upper and lower bound of per-node capacity in
ad hoc way is Q(γ ) in the denominator. Here we compare the
orders of H (γ, β)η(n) and Q(γ ). By [3, Lemma 6], we give
the comparison between them in TABLE 3.

TABLE 3 shows that2(H (γ, β)η(n)) = 2(H (γ, β)η(n)+
Q(γ )), which means that the upper and the lower bounds are
of the same order. There is no gap in our results between the
upper and the lower bounds for strong mobility case in ad hoc
way. Thus, we derive a tight capacity bound in Theorem 3.
Theorem 3: Given a network O consisting of n mobile

ad hoc nodes, in strong mobility case, the per-node social-
broadcast capacity can be achieved by

λ = 2(
Wn

H (γ, β)η(n)
).
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TABLE 3. Comparison between the upper and lower bounds for strong
mobility case in ad hoc way.

We list the capacity results in TABLE 4. Based on
TABLE4,we find that the network capacity does not decrease
monotonically as parameters γ and β increase. Some detailed
analyses about the capacity results are provided in
Section VII-B.

C. SOCIAL-BROADCAST CAPACITY FOR STRONG
MOBILITY CASE FROM CELLULAR PERSPECTIVE
1) UPPER BOUND
The following analysis is divided into three parts. The first
part considers the traffic flows from mobile users to base
stations; the second part considers the flows among base sta-
tions, and the third part considers the flows from base stations
to mobile users.

According to Lemma 2 on the Generalized Random
Geometric Graph (GRGG), we define the capacity crossing
L as

µL =
∑
i∈IL

∑
j∈EL

µ(dij),

where µL depends on the mobile users’ home points. The
definition of µL is an alternative of the link capacity among
all nodes in Definition 1.
Lemma 6: Given a network O consisting of n mobile ad

hoc nodes and m base stations, considering the flows from
mobile users to base stations in strong mobility case, the
upper bound of per-node social-broadcast capacity can be
achieved by

λ = O(
Wup · m

n
).

TABLE 4. Social-broadcast capacity for strong mobility case in
ad hoc way.

The result is obvious due to the competition for the limited
m ·Wup bandwidth resource among n mobile users.
Lemma 7: Given a network O consisting of n mobile ad

hoc nodes and m base stations, considering the flows among
base stations in strong mobility case, the upper bound of per-
node social-broadcast capacity can be achieved by

λ = O(
Wbase · m2

Q(γ )
).

Proof: Assume that Ctes and Dtes are adjacent tessella-
tions. Let N h(Ctes) and N h(Dtes) represent the lower bound
of the number of base stations whose home points fall in
Ctes and Dtes, respectively; and let N h(Ctes) and N h(Dtes)
represent the upper bound of the number of base stations
whose home points fall in Ctes and Dtes, respectively.

According to Lemma 2, we have a similar conclusion for
base stations:

λ ≤

∑
i:Yi∈IL

∑
j:Yj∈EL µij∑

s:Ys∈IL

∑
d :Yd∈EL λsd

.

Furthermore, we denote the numerator of above inequality
as µY , having

µY ≥ Wbase ·
∑

Ctes∈IL

∑
Dtes∈EL

N h(Ctes)N h(Dtes),
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and

µY ≤ Wbase ·
∑

Ctes∈IL

∑
Dtes∈EL

N h(Ctes)N h(Dtes).

The bandwidth among the base stations can be assumed to
be a constant. By applying Lemma 1, we have

µY ≥ Wbase ·
1
16
m2(16+ ζ )2

∑
Ctes∈IL

∑
Dtes∈EL

τ (n)4,

and

µY ≤ Wbase · 16m2(16+ ζ )2
∑

Ctes∈IL

∑
Dtes∈EL

τ (n)4.

In strong mobility case, τ (n)4 = o(1) is proportional to the
tessellation size. Thus, we obtain

µY ∼ Wbase · m2.

Since the number of source-destination pairs crossing L is
2(
∑n

i=1 qi), i.e., 2(Q(γ )), we finally obtain

λ = O(
Wbase · m2

Q(γ )
).

�
Lemma 8: Given a network O consisting of n mobile ad

hoc nodes and m base stations, considering the flows from
base stations to mobile users in strong mobility case, the
upper bound of per-node social-broadcast capacity can be
achieved by

λ = O(
Wdown · m
Q(γ )

).

Here the proof of Lemma 8 is similar to the proof of
Lemma 7.

Combining Lemma 6, Lemma 7 and Lemma 8, we have
the following Theorem 4.
Theorem 4: Given a network O consisting of n mobile

users and m base stations, in strong mobility case, the upper
bound of per-node social-broadcast capacity can be achieved
using the cellular routing method as follows:

λ = O(min(
Wup · m

n
,
Wbase · m2

Q(γ )
,
Wdown · m
Q(γ )

)).

2) LOWER BOUND
In this section, we present the cellular routing scheme and
analyze the lower bound in the strong mobility case.
Definition 3 (Cellular Routing): Cellular routing con-

sists of three phases. In the first phase, a social-broadcast
source node vi sends the packets to a base station. In the sec-
ond phase, the packets are routed to the base stations whose
tessellations contain the qi destinations. In the last phase,
those base stations broadcast packets to the destinations in
their tessellations.
Lemma 9 [6]: In strong mobility case, a traffic rate of

2(Wup·m
n ) can be sustained from any mobile user to base

stations in phase I of cellular routing.

Lemma 10: In strong mobility case, a traffic rate of
2(Wbase·m2

Q(γ ) ) can be sustained among base stations in the
phase II of cellular routing.

Proof: For phase II, themaximal traffic flowing between
two tessellations Etes and Ftes via base stations is bounded
by λ · Q(γ ). It can be sustained if no edge connect-
ing base stations from the two tessellations is overloaded,
i.e., satisfying

λ · Q(γ )
Nh(Etes)Nh(Ftes)

∼
λ · Q(γ )
m2 ≤ Wbase,

where Nh(Etes) and Nh(Ftes) denote the number of base sta-
tions in the tessellation Etes and Ftes respectively. Hence,
λ ≤ 2(Wbase·m2

Q(γ ) ) is feasible in this phase. �

Lemma 11 [6]: In strong mobility case, a traffic rate
of 2(Wdown·m

Q(γ ) ) can be sustained from one base station to
qi destinations (mobile users) in the phase III of cellular
routing.

Combining Lemma 9, Lemma 10 and Lemma 11, we have
the following Theorem 5.
Theorem 5: Given a network O consisting of n mobile

users and m base stations, in strong mobility case, the lower
bound of per-node social-broadcast capacity can be achieved
using the cellular routing scheme as follows:

λ = 2(min(
Wup · m

n
,
Wbase · m2

Q(γ )
,
Wdown · m
Q(γ )

)).

D. SOCIAL-BROADCAST CAPACITY FOR STRONG
MOBILITY CASE BY HYBRID ROUTING
Therefore, combining Theorem 1 and Theorem 4, we obtain
the upper bound of per-node social-broadcast capacity for
strong mobility case by hybrid routing in Theorem 6.
Theorem 6: Given a network O consisting of n mobile

users and m base stations, in strong mobility case, the upper
bound of per-node social-broadcast capacity can be achieved
by the hybrid routing way as follows:

λ = O{max[
Wn

H (γ, β)η(n)
,

min(
Wup · m

n
,
Wbase · m2

Q(γ )
,
Wdown · m
Q(γ )

)]}.

Then, combining the Theorem 2, Theorem 3 and
Theorem 5, we obtain the lower bound of per-node social-
broadcast capacity for strong mobility case by hybrid routing
in Theorem 7.
Theorem 7: Given a network O consisting of n mobile

users and m base stations, in strong mobility case, the lower
bound of per-node social-broadcast capacity can be achieved
by the hybrid routing way as follows:

λ = �{max[
Wn

H (γ, β)η(n)
,

min(
Wup · m

n
,
Wbase · m2

Q(γ )
,
Wdown · m
Q(γ )

)]}.

Finally, through above Theorem 6 and Theorem 7, we have
the social-broadcast capacity for strong mobility case with
hybrid routing in Theorem 8.
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Theorem 8: Given a network O consisting of n mobile
users and m base stations, in strong mobility case, the per-
node social-broadcast capacity can be achieved by the hybrid
routing way as follows:

λ = 2{max[
Wn

H (γ, β)η(n)
,

min(
Wup · m

n
,
Wbase · m2

Q(γ )
,
Wdown · m
Q(γ )

)]}.

VI. SOCIAL-BROADCAST CAPACITY FOR WEAK
MOBILITY CASE
In this section, we discuss the weak mobility case under the
condition τ (n) = ω

(
1
η(n)

)
. In this case, first we present a

social-broadcast capacity bound for weak mobility case from
the ad hoc perspective (Theorem 9); second, we introduce
some studies related to the capacity bound for weak mobility
case from cellular perspective and note the differences with
our results.

A. SOCIAL-BROADCAST CAPACITY FOR WEAK MOBILITY
CASE FROM AD HOC PERSPECTIVE
Under the weak mobility case, node mobility does not play
an important role in increasing the capacity. We can regard
this case as an approximately static state. We choose RT =
2(τ (n)) to guarantee the network connectivity.
Definition 4: Scheduling Scheme S[
We use K 2-TDMA scheduling scheme based on a tessella-

tion partition with side length
√
(16+ ζ )τ (n), where ζ is a

small constant, ζ > 0.
A previous study [7] shows that a constant K that guar-

antees the successful scheduling of each tessellation in
K 2 time-slots can be identified.
Lemma 12: In the weak mobility case, the probability of a

social-broadcast flow going through a given tessellation Ates
is

min
(√

2H (γ, β)
√
(16+ ζ )τ (n)+ Q(γ )(16+ ζ )τ 2(n), 1

)
.

Proof: This proof is similar to the proof of Lemma 5.
We know that the side length of the tessellation partition in
weak mobility case is

√
(16+ ζ )τ (n). We use

√
(16+ ζ )τ (n)

to replace the side length of Ates in the proof of Lemma 5.
Then, we can complete this proof and obtain the result of
Lemma 12. �
Theorem 9: Given a network O consisting of n mobile

ad hoc nodes, in weak mobility case, the lower bound of
per-node social-broadcast capacity can be achieved through
scheduling scheme S[ as follows:

λ = �

 W

H (γ, β)
√

log n
n

 .
Proof: Similarly, we suppose that there are two adjacent

tessellations Ates and Btes. In the scheduling scheme S[,
the maximum feasible traffic flow is of order W

K2 .
Using Lemma 12, we obtain themaximal number of social-

broadcast flows,

O(
√
2H (γ, β)

√
(16+ ζ )τ (n)+ Q(γ )(16+ ζ )τ 2(n)).

Thus, we obtain the lower bound for weak mobility case in
ad hoc way,

λ ≥

W
K2

√
2H (γ, β)

√
(16+ ζ )τ (n)+ Q(γ )(16+ ζ )τ 2(n)

.

Finally, we obtain

λ = 2

 W

H (γ, β)
√

log n
n + Q(γ )

log n
n

 .
Further, we compare the order of the two factor

H (γ, β)
√

log n
n and Q(γ ) log nn in the denominator. Also,

through the derivation based on TABLE 3, we found that the
order of the former is larger than that of the latter. Therefore,
we have

λ = 2

 W

H (γ, β)
√

log n
n

 .
�

Our results are listed in TABLE 5. Through analyzing
the results in Section V-A and Section VI-A, we find that
the strong mobility case has an obviously larger capacity
than the weak mobility case. This finding is consistent with
the well-known conclusion that mobility can increase the
capacity [11].

B. SOCIAL-BROADCAST CAPACITY FOR WEAK MOBILITY
CASE FROM CELLULAR PERSPECTIVE
The weakmobility case can be considered a static case. Using
the cellularmethod, a larger network capacity can be achieved
compared with the use of the ad hoc way. Since previous
studies [18], [19] have already discussed the capacity of a
static network with base stations, we refer to these studies for
details.

The difference between these previous results and ours
is the number of sessions in the network. In those studies,
the number of sessions is order of n, whereas in our study,
it is order of Q(γ ).

VII. EVALUATION
A. HETEROGENEOUS MOBILITY
In the paper, our mobility model is a home point based model,
and the moving of users is heterogeneous, which is reflected
in two aspects. First, many users gather in some regions and
form different groups. Second, the user often moves around
a center/home point in an area with high probability.

Here, we use two check-in datasets, Gowalla and
Brightkite [29], to show the reality of the heterogeneous
mobility. Both of the datasets come from the location based
social networking service provider in which users share
their locations by checking-in. The datasets are published
in SNAP [30]. Gowalla contains a total of 6,442,890 check-
ins of 196,591 users over the period of Feb.2009-Oct.2010.
Brightkite contains a total of 4,491,143 check-ins of
58,228 users over the period of Apr.2008-Oct.2010.

VOLUME 5, 2017 12153



Z. Li, C. Wang: Modeling Data Transport Capacity of Mobile Networks for Mobile Social Services

TABLE 5. Social-broadcast capacity for weak mobility case in ad hoc way.

We count the check-ins of all users in the U.S. area.
Fig. 5 shows that the distribution of location check-ins is
heterogeneous. The check-ins in some areas are dense, which
demonstrates that users are prone to form clusters in these
dense areas.

FIGURE 5. Distribution of check-ins in the U.S. (a) Gowalla Dataset.
(b) Brightkite Dataset.

Next, from the above two datasets, we randomly capture
the check-ins of three users. In Fig. 6, three different col-
ors (red, blue and green) represent the different users.We find
that a moving user checks in from a fixed location often. The
fixed location can be considered as the home point of this
user. It demonstrates that the home point based phenomenon
exists in the real world.

FIGURE 6. Check-ins statistics for three different users. (a) Gowalla
Dataset. (b) Brightkite Dataset.

FIGURE 7. Relationship between the check-in frequency and the distance
from the home point. (a) Gowalla Dataset. (b) Brightkite Dataset.

FIGURE 8. Illustration of the piecewise functions for social-broadcast
capacity in strong mobility case using ad hoc way.

Finally, we show the relationship between distance and
check-ins. In both datasets, we choose the location of each
user withmaximum check-ins as the home point. Fig. 7 shows
that the farther the user moves away from its home point,
the lower the check-in frequency is. This finding demon-
strates that most users move around their home points with
high probability.

B. THEORETICAL RESULTS ANALYSIS AND VALIDATION
In Section V and Section VI, we give the data transport capac-
ity results of mobile networks for mobile social services.
With the infrastructure support, the subtle differences of the
theoretical results are affected by the clustering exponent of
friendship degree γ and friendship formation β.
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FIGURE 9. Relationship between the network capacity and the number of friends. (a) Cluster Range = 100. (b) Cluster Range = 150.
(c) Cluster Range = 200.

FIGURE 10. Relationship between the network capacity and the cluster range. (a) Percentage of Friends = 1%. (b) Percentage of Friends = 10%.
(c) Percentage of Friends = 50%.

An illustration of the piecewise capacity λ in TABLE 4 is
shown in Fig. 8. Here, we take the results in TABLE 4 as an
example and give intuitive explanations as follows:

1) When the clustering exponent of friendship degree γ is
bigger, the number of friends of each user is limited by
a smaller upper bound with high probability. It possibly
reduces the interference among nodes and increases the
social-broadcast capacity.

2) When the clustering exponent of friendship forma-
tion β is bigger, the friends may be closer to each
user with high probability. It possibly reduces the total
transmission distance of each social-broadcast ses-
sion. The nodes can deliver messages directly to other
nodes without moving far away. It ultimately results
in a larger social-broadcast capacity. Shortly speaking,
the bigger parameters γ and β are, the larger social-
broadcast capacity is.

Thus, the piecewise capacity results are significantly
affected by the parameters γ and β. Next, we vali-
date the relationship between the capacity and the two
parameters.

We use ‘The ONE’ simulator [31] to emulate the network
capacity. This simulator can observe the entire data trans-
portation process in the network. We emulate 1000 moving
nodes in a 200m×200m square area. The transmission range
is 2.5m. We partition the nodes into 10 clusters and cast the
10 clusters randomly in the network area. The size of each
cluster is 100. To emulate the social characteristics, we have
settings as follows.

1) The social movements show the phenomenon of
restricted mobility. By changing the cluster diameter

through the range 100m to 150m to 200m, we allowed
the nodes in each cluster to move around the entire
network.

2) The parameter γ fixes the number of friends for each
user. In the simulation, we realize this parameter by set-
ting the number of destinations/friends for each source.
We let each node choose its friends in the network
randomly. The parameter β fixes the distance between
each source and its destinations/friends. In the simula-
tion, we realize the parameter β by controlling the size
of the cluster range.

3) The clusters are overlapped with each other. Since the
transmission range is 2.5m, the relay nodes between the
source-destination can be chosen in any clusters within
the transmission range.

4) Since we discuss the social broadcast capacity, we
execute epidemic routing among the source and its
friends. Additionally, we use the ratio of ‘relayed
packets’ to ‘created packets’ to reflect the network
capacity.

Note that, although we cannot totally emulate the social
traces of users, the above settings can model friendships, dis-
tances of friendships, social broadcasts, and restricted mobil-
ity. These settings are sufficient to study the relationship
between capacity and the two parameters γ and β.

Next, we perform the simulation to test the variation of
the network capacity with the parameters γ and β so as to
validate the correctness of the capacity results derived in the
paper.

With a fixed cluster range, we change the number of friends
of a user to observe the variation of the network capacity,
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shown in Fig. 9. The number of friends of a user equals the
percentage of friends of a user multiplied by the size of the
cluster. A large percentage of friends means that the number
of destinations/friends of a user is large, i.e., the parame-
ter γ is small. We perform the simulation in different sce-
narios (cluster range = 100, 150, 200). From Fig. 9 (a)-(c),
we observe that the smaller the number of friends is,
the larger the value of ‘relayed packets/created packets’ is.
This demonstrates that a larger parameter γ limits the
number of friends, which reduces the interference of
simultaneous transmissions and results in a large network
capacity.

Next, with a fixed number of friends, we change the cluster
range to observe the variation of the network capacity, shown
in Fig. 10. A large cluster range means the moving range of
the node is large. If the distance between the friends and its
source is large, the parameter β is small. We perform the
simulation in different scenarios (the percentage of friends
for a user= 1%, 10%, 50%). From Fig. 10 (a)-(c), we see that
the smaller the cluster range is, the larger the value of ‘relayed
packets/created packets’ is. This finding demonstrates that a
larger parameter β limits the transmission distance between
the source and its destinations, which results in a large
network capacity.

VIII. CONCLUSION
In this paper, we mainly study the capacity of mobile
networks for mobile social services under the hybrid com-
munication architecture. We construct a system model by
introducing a three-layered social network model. We use
the clustered model to characterize the spatial inhomo-
geneities of node density in the physical layer. Then,
through an improved population-based model, we success-
fully address social relationship formation in the mobile
environment and obtain the degree distribution of mobile
users’ friends. Finally, we derive the results of the network
capacity of social-broadcast. This work can serve as the first
step in investigating the capacity of mobile ad hoc social
networks (MAHSNs) with infrastructure support. Besides,
we consider that each user has only one home point in the
paper. In reality, a person may have many high activity loca-
tions. In the future, we can extend the one home point based
model to a general case of multi-center model, i.e., having
more than one home point.
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