
Wireless Communications and Mobile Computing

Wireless Communications and Mobile Computing1

Finder-MCTS: A Cognitive Spectrum Allocation Based on2

Traveling State Priority and Scenario Simulation in IoV3

Zhong Li1, Hao Shao1

1College of Information Science and Technology, Donghua University, Shanghai 201620, China

Correspondence should be addressed to Hao Shao; shao0216@mail.dhu.edu.cn

4

Abstract5

With the increasing number of intelligent connected vehicles, the problem of scarcity of communication resources6

has become increasingly obvious. It is a practical issue with important significance to explore a real-time and7

reliable dynamic spectrum allocation scheme for the vehicle users, while improving the utilization of available8

spectrum. However, previous studies have problems such as local optimum, complex parameter setting, learning9

speed, and poor convergence. Thus, in this paper, we propose a cognitive spectrum allocation method based on10

traveling state priority and scenario simulation in IoV, named Finder-MCTS. The proposed method integrates of-11

fline learning with online search. This method mainly consists of two stages. Initially, Finder-MCTS gives the12

allocation priority of different vehicle users based on the vehicle’s local driving status and global communication13

status. Furthermore, Finder-MCTS can search for the approximate optimal allocation solutions quickly online ac-14

cording to the priority and the scenario simulation, while with the offline deep neural network based environmental15

state predictor. In the experiment, we use SUMO to simulate the real traffic flows. Numerical results show that16

our proposed Finder-MCTS has 36.47%, 18.24%, 9.00% improvement on average than other popular methods in17

convergence time, link capacity and channel utilization, respectively. In addition, we verified the effectiveness and18

advantages of Finder-MCTS compared with two MCTS algorithms’ variations.19

Keywords: Internet of Vehicle (IoV); cognitive radio; dynamic spectrum allocation; Monte-Carlo tree search20

(MCTS)21

1. Introduction22

Recently, as a promising technology, internet of vehicles (IoV) has attracted the attention of governments and enter-23

prises around the world, to serve the smart city. The moving vehicles can be regarded as mobile terminals equipped24

with advanced network components, such as wireless network interfaces, on-board sensors, which provide many25

personalized services by accessing the internet. These vehicle services (e.g., road condition broadcasts, dangerous26

event predictions) have high requirements for data transmission and communication quality. Although 5G technol-27

ogy is becoming popular and growing rapidly, the available spectrum resources have not increased simultaneously.28

So far, the spectrum resources of 6GHz and below 6GHz have almost been exhausted [1]. Moreover, the spec-29

trum resources at the base stations are usually allocated to the calls and traffic services of mobile phone users first.30

Thus, the scarcity of spectrum resources and the low utilization of frequency bands are critical issues hindering the31

development of IoV.32
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Currently, as an effective solution to the underutilized problem of spectrum resources, cognitive radio (CR)33

can reuse the idle spectrum resources through dynamic spectrum access technology. In CR networks, network34

users are divided into two types: primary users (PUs) and secondary users (SUs). PUs have the high priority to35

use the spectrum in the authorized frequency bands. SUs can dynamically access spectrum holes opportunistically36

and use available spectrum resources, which can enhance the spectrum utilization. Therefore, inspired by the37

CR technology, we let vehicles equipped with CR functions and form a cognitive radio-based internet of vehicles38

(CR-IoV). We utilize CR to help solve the low utilization of frequency bands in IoV.39

In CR-IoV, the system includes PUs (composed by mobile phone users) and SUs (composed by vehicles40

equipped with CR functions). However, in reality, vehicle users with high mobility will cause frequent changes41

in the network topology. The availability of spectrum will also change with the activation time and channel oc-42

cupancy of PUs. Hence, how to meet the real-time and reliable requirements when solving the dynamic spectrum43

allocation problem under a time-varying environment is an significant challenge.44

There are many previous studies about dynamic spectrum allocation in mobile wireless networks. The most45

popular studies can be mainly classified into four categories: (1) traditional optimization theory-based allocation46

methods [2, 3]; (2) game theory-based allocation methods [4–6]; (3) swarm intelligence optimization-based allo-47

cation methods [7–11]; (4) machine learning-based allocation methods [12–17]. Although the above methods can48

solve the spectrum allocation problem, there exist many disadvantages. First, when the constraints are complex,49

traditional optimization theory and game theory are not suitable for quickly solving the large-scale dynamic plan-50

ning problems. Second, the swarm intelligence optimization is easy to fall into the local optimum [18]. Besides, the51

effective parameter settings and selection in the swarm intelligence optimization is also complex. Recently, deep52

reinforcement learning (DRL) algorithms have been proved to solve complex dynamic decision-making problem53

with high-dimensional state and action space. It can learn the potential regularities in the environment with the54

help of the idea of trial and error, thereby assisting the intelligent decision-making. However, this type of machine55

learning-based method also exists some limitations, such as slow learning speed, poor convergence, and bad self-56

adaption ability. Thus, in this paper, we propose a new cognitive spectrum allocation method based on traveling57

state priority and different scenarios specially for IoV in this paper.58

First, especially in IoV, we should consider the traveling/moving state of a vehicle. A vehicle that is about to59

leave the coverage area of a base station should have relatively low spectrum allocation priority. Vehicle users with60

different traveling state, such as location, speed, acceleration, communication capabilities, should have different61

opportunities to obtain spectrum resources. Thus, in this paper, we consider the priority assignment based on62

vehicle traveling state when doing spectrum allocation.63

In addition, in this proposed new method, we choose Monte-Carlo tree search algorithm (MCTS) to model64

our problem. Traditional model-free based deep reinforcement learning algorithms (e.g., deep Q network, soft65

actor-critic) often require a large amount of samplings and learn strategies from past experiences with the help of66

neural networks. However, model-based deep MCTS can not only use deep neural networks to fit the environment67

model from experience data, but also can simulate a variety of possible future trajectories for evaluation through the68

expansion of the tree structure, so as to choose more promising directions to explore the best policy. In this paper,69

through designing to simulate different scenarios, we improve the learning efficiency and reduce the searching70

space compared with traditional MCTS methods.71

Our main contributions can be summarized as follows:72

•We design a priority assignment rule based on vehicle traveling state for spectrum allocation. Through defin-73

ing a vehicle traveling evaluation score and a network utility score, we obtain a comprehensive priority evaluation74

score for each vehicle. According to the priority score, we allocate available spectrum resources from the highest75

priority to the lowest vehicle user, which can improve the allocation performance when doing dynamic spectrum76

allocation in IoV.77

• Combining with the above priority score, we propose a cognitive spectrum allocation method based on travel-78

ing state priority and different scenarios specially for IoV, named Finder-MCTS. We model the problem of spectrum79

allocation as a binary integer linear programming problem (BILP) with constraints. Meanwhile, through designing80

2



Wireless Communications and Mobile Computing

a constraint oriented tree expansion and scenario simulation mechanism, Finder-MCTS can give an approximate81

optimal solution quickly and improve the link capacity of V2I (vehicle to infrastructure) communication in the82

network.83

•We conduct experiments to evaluate the performance of Finder-MCTS by using SUMO. Results show that our84

proposed method has 36.47%, 18.24%, 9.00% improvements on average than other popular comparison methods in85

convergence time, link capacity and channel utilization, respectively. In addition, Finder-MCTS also shows good86

improvements with the aid of priority evaluation and different scenarios’ simulation of PUs’ service durations,87

compared with two variations of MCTS.88

The remainder of this paper is organized as follows. In Section 2, a review of related work is provided. In Sec-89

tion 3, the system scenario and problem formalization are presented in detail. In Section 4, the priority assignment90

based on vehicle traveling state are described. In Section 5, the Finder-MCTS method for cognitive IoV spectrum91

allocation are proposed. In Section 6, simulations are carried out to demonstrate the effectiveness of the proposed92

Finder-MCTS method. In Section 7, conclusion and future work are given.93

2. Related Work94

Nowadays, there are many excellent studies on dynamic spectrum allocation in cognitive radio networks. In this95

section, we classify and compare them from the perspective of theoretical methods.96

2.1 Spectrum Resource Allocation Based on Traditional Optimization Theory and Game97

Theory98

In order to solve the problem of dynamic allocation of spectrum resources in wireless communications, the tradi-99

tional methods mainly include the methods based on mathematical optimization [2, 3] and the methods based on100

game theory [4–6]. For example, Martinovic et al. propose a cognitive radio spectrum allocation method based on101

integer linear programming in the work of [3], which solves the spectrum allocation problem with interference by102

using many complex assumptions and constraints. It is difficult or even impossible to find an optimal solution in the103

real cognitive radio network with the complex environment and dynamic network topology. Although the methods104

based on mathematical optimization have high solution accuracy, the generalization capability is insufficient.105

Besides, with the goal of maximizing spectrum utilization, Yi et al. introduce a spectrum resource allocation106

method based on auction in the work of [5]. Liu et al. design a dynamic spectrum access method using game theory107

in the work of [6]. However, these methods are not fit for IoV. The high mobility of vehicles puts forward a strict108

requirement for the convergence of Nash equilibrium in the game theory. It is hard to reach this equilibrium point.109

2.2 Spectrum Resource Allocation Based on Swarm Intelligence Optimization110

There are many related studies [7–11] based on swarm intelligence optimization in the domain of spectrum allo-111

cation. For example, Liu et al. use PSO to solve the allocation of spectrum resources in a centralized way in the112

work of [11]. However, the iteration of swarm intelligence optimization usually gets stuck in local optimal solu-113

tions, which can be far from the global optimal solution [18]. In addition, many swarm intelligence optimization114

algorithms have large amount of calculations in debugging due to complex parameters.115

2.3 Spectrum Resource Allocation Based on Machine Learning116

In recent years, with the development of statistical learning methods, many studies use machine learning to realize117

the dynamic spectrum allocation [12]. Among them, reinforcement learning can guide a system agent to learn the118

unknown environment by trial and error [19]. It can be applied to the spectrum allocation decision.119
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Figure 1: System scenario of spectrum allocation in CR-IoV.

First, the multi-arm gambling machine (MAB) is not only an important random decision-making theory in the120

field of operational research, but also belongs to a type of online learning algorithm in reinforcement learning. The121

task of the agent is to select one arm to pull in each round based on the historical rewards it collected, and the goal122

is to collect cumulative reward over multiple rounds as much as possible. In essence, MAB is a way to optimize123

the reward by balancing exploration and exploitation. Li et al. give a survey of spectrum resource allocation by124

using MAB in the cognitive radio network in the work of [13]. Zhang et al. formulate and study a multi-user MAB125

problem that exploits the idea of temporal-spatial spectrum reuse in the cognitive radio network [14]. However,126

the MAB modeling does not consider the cost of pulling arms in the existing allocation schemes. When MAB is127

utilized to solve the allocation problem in a centralized way, the scale of the arm increases exponentially with the128

number of users to be assigned. Therefore, the convergence of spectrum resource scheduling algorithm based on129

MAB cannot be guaranteed.130

In addition, model-free-based deep reinforcement learning is also applied to the research of spectrum allocation.131

Naparstek et al. propose a spectrum allocation scheme based on deep learning framework under the wireless132

environment in the work of [15]. However, model-free-based deep reinforcement learning has problems of slow133

online learning speed and bad self-adaption ability.134

Recently, another kind of model-based reinforcement learning, Monte-Carlo tree search algorithm (MCTS), is135

applied in the field of resource allocation [16, 17]. The MCTS-based allocation algorithm builds a decision tree to136

explore the possible solutions by expanding and pruning. Due to the expansion of the tree, the search space becomes137

tremendous gradually and the calculation scale is unacceptable. If this type of method is applied in IoV directly,138

the dynamic environment will further cause a large search tree. In addition, due to the neglect of environmental139

uncertainties, the random strategy adopted by Basic-MCTS in the simulation stage will produce a high variance,140

which reduces the search efficiency [20].141

3. System Scenario and Problem Formalization142

In this section, we introduce the system scenario of spectrum allocation in CR-IoV in Section , and give the math-143

ematical formalization of our optimization problem in Section .144

3.1 System Scenario145

Figure 1 shows the system scenario of spectrum allocation in CR-IoV. PUs are the authorized mobile phone users146

in the current network, and SUs are the vehicles equipped with CR modules. When a PU occupies a channel, there147

is a protection area around the PU (i.e., the red area in Figure 1). Similarly, an interference radius is also generated148

when the SU occupies a channel (i.e., the green area in Figure 1). Any radiation from SUs falling into the protection149

area would interfere with the PU.150
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In this scenario, our designed allocation algorithm is deployed on the base station. Vehicle nodes equipped with151

CR modules can sense whether there exist available idle spectrum resources. A vehicle can use the common control152

channel (CCC) to send a request to the base station to access the channel. The base station collects requests from153

vehicles centrally, and learns a near optimal policy to allocate available channel resources to cognitive vehicles154

within the coverage area (i.e., the black solid circle in Figure 1).155

Note that, because IoV is a dynamic network, our designed spectrum resources allocation algorithm must156

be executed within a defined allocation time window. We assume that the allocation time window for channel157

allocation is T . After the time window slides, we will refresh and observe the current vehicles which require to158

access the base station. A large time window cannot meet the real-time requirement of IoV, but a time window that159

is too small cannot support our algorithm for well operating. In the experiment, we set the size of a time window T160

to 10s to handle the dynamic network.161

3.2 Definitions and Problem Formalization162

1) Definitions163

In this paper, we consider spectrum resource allocation in the underlay mode, i.e., each channel can support the164

parallel transmissions of several access users. Assume that within a base station’s communication coverage, there165

are N SUs competing for spectrum resources of M channels at time t, and the channels are orthogonal and non-166

overlapping. Meanwhile, we assume that there are K PUs as a prerequisite for spectrum allocation in the coverage167

area, and each PU occupies only one channel for information transmission in the current network. The spectrum168

resource allocation model consists of a channel availability matrix L, a SU-SU interference constraint matrix C, a169

channel reward matrix R and a conflict-free channel assignment matrix A.170

We define that a PU k (1 ≤ k ≤ K) occupying a certain authorized channel m (1 ≤ m ≤ M) in CR-IoV has171

a protection radius R̃(k,m). Meanwhile, each SU n (1 ≤ n ≤ N) has an interference radius R(n,m) on channel172

m due to its transmit power.- We obtain an Euclidean distance D
(
R̃(k,m), R(n,m)

)
between a PU k and a SU n.173

When the inequality D(R̃(k,m), R(n,m)
)
− R̃(k,m) ≤ R(n,m) holds, it means that there exists communication174

interference between the PU k and SU n.175

Similarly, we also can obtain an Euclidean distance D(R(n,m), R(n′,m)
)

between two different SUs n176

and n′, where R(n,m) and R(n′,m) are the interference radius values of the two SUs n and n′. When177

D(R(n,m), R(n′,m)
)
− R(n,m) ≤ R(n′,m) holds, it means that there exists communication interference178

between the two SUs n and n′. Note that, when there is no communication interference between two users, they179

can use the same channel for transmissions at the same time; otherwise, they cannot access the same channel at the180

same time.181

Next, according to the above descriptions of communication interference between different users, we give the182

following definitions about our problem.183

• Channel Availability Matrix L.184

L = {ln,m|ln,m ∈ {0, 1}}N×M is an N ×M dimensional matrix used to describe the channel availability.
When ln,m = 1, it means channel m is available for SU n, and vice versa. It needs to meet the following two
conditions to determine whether channel m is available for SU n. First, SU n cannot use channel m occupied
by PU k under the condition D(R̃(k,m), R(n,m)

)
− R̃(k,m) ≤ R(n,m). Second, SUs need to compare the

interference power they received with the maximum allowable interference level γm on channel m. Channel m is
considered to be available to SU n if the following inequality is satisfied:

K∑
k=1

Pm,n,k +Nm ≤ γm (1)

where Pm,n,k denotes the received power at SU n of a signal transmitted from PU k on channel m; Nm denotes185

the level of background noise on channel m.186

• SU-SU Interference Matrix C.187
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C = {cn,n′,m|cn,n′,m ∈ {0, 1}}N×N×M is an N×N×M dimensional matrix used to describe the interference188

constraint between two different SUs n and n′ on channel m, where cn,n′,m = 1 indicates that there exists inter-189

ference when SUs n and n′ share the channel m for information transmission. Conversely, cn,n′,m = 0 indicates190

that SUs n and n′ can use channel m simultaneously. When n = n′, cn,n′,m = 1 − ln,m. Meanwhile, the matrix191

element needs to satisfy the condition cn,n′,m ≤ ln,m · ln′,m, i.e., the premise for the possibility of interference is192

that channel m is available to both SUs n and n′.193

• Channel Allocation Matrix A.194

A =
{
an,m

∣∣ an,m ∈ {0, 1}}N×M
is an N ×M dimensional matrix used to describe the conflict-free channel195

allocation for SUs. When an,m = 1 holds, it means that the channel m is allocated to the SU n, and vice versa.196

Meanwhile, matrix A must satisfy the interference constraint given by matrix C. That is to say, for two different197

SUs n and n′, when cn,n′,m = 1, the equation an,m · an′,m = 0 holds. In addition, we assume that each SU in the198

allocation can only occupy one channel for information transmission. Therefore, for any two different channels m199

and m′, the inequality an,m + an,m′ ≤ 1 should be satisfied.200

• Channel Reward Matrix R.201

R = {rn,m|rn,m ≥ 0}N×M is an N ×M dimensional matrix used to describe the link rewards for different
SUs. Notation rn,m denote the reward obtained by SU n when it occupies channel m of a base station. rn,m is
measured by the link capacity. Link capacity is defined as follows:

rn,m = Wm · log2(1 + SINRn,m) (2)

where Wm is the bandwidth of channel m, and SINRn,m is the signal to interference plus noise ratio when SU n

accesses channel m. The calculation of SINRn,m is shown in Eq. (3).

SINRn,m =
Pm,n

Nm +
∑Count(Am)

q=1,q ̸=n Pm,q

(3)

where we regard the SU and the base station as the transmitting-end and the receiving-end respectively. Here, Am202

represents the m-th column vectors of matrices A and Count(Am) denotes the total number of allocated SUs on203

channel m; Pm,n is the power received by the receiver (base station) from the transmitter n on channel m.204

2) Problem Formalization205

From the above definitions, it can be seen that there are more than one channel allocation matrices satisfying the
allocation constraints. Therefore, let ΛL,C = {Ag}(g ∈ N+) denote the set of all conflict-free channel allocation
schemes derived from the current network conditions L and C. Because there are many possible spectrum allocation
schemes, choosing different spectrum allocation schemes will generate different total system rewards. The object
of spectrum allocation in this paper is to maximize the total network capacity U(A,R) of the network system. We
give the definition of total network capacity as follows:

U(A,R) = SUM(
M∑

m=1

Am ◦Rm) (4)

where Rm represents the m-th column vector of matrice R. Notation ◦ represents the Hadamard product, i.e.,206

multiplication of the elements at the corresponding positions of the two vectors. Am is a 0/1 decision vector of207

N × 1 size, and Rm is an N × 1 dimensional reward vector with real numbers.
∑M

m=1 Am ◦Rm is also an N × 1208

dimensional vector. Notation SUM is the operator that returns the summation of all entries of a matrix.209

In the IoV, our paper aims to obtain an optimal channel allocation matrix A∗ (i.e., with the equation A∗ =210

argmax
A∈ΛL,C

U(A,R)), which satisfies the above non-interference constraints and solves the problem of low utilization211

of spectrum resources at the base station side. The combinatorial optimization problem can be formulated as a212

binary integer linear programming problem (BILP) as follows:213

6



Wireless Communications and Mobile Computing

max
A,R

U(A,R) = max
A,R

SUM(
M∑

m=1

Am ◦Rm) (5)

s.t. :

an,m ∈ {0, 1}, rn,m ≥ 0, 1 ≤ n ≤ N, 1 ≤ m ≤M (5a)

an,m ≤ ln,m (5b)

an,m · an′,m = 0 if cn,n′,m = 1 (5c)

an,m + an,m′ ≤ 1 (5d)

P
min

m,n ≤ Pm,n ≤ P
max

m,n if Pm,n ̸= 0 (5e)
n∑

i=1

Pm,k.n ≤ δm,k, 1 ≤ k ≤ K (5f)

Am ×RT
m ≤ ϕm (5g)

Among these, constraint (5a) gives the value range of the matrix vectors Am and Rm. Constraint (5b) ensures214

that an allocated channel must be an available channel for SU n. Besides, to protect the communication of each SU215

from interference by other SUs on channel m, the conflict-free channel allocation matrix should satisfy constraint216

(5c). Constraint (5d) indicates that each SU can only occupy one channel for information transmission. In the217

constraint (5e), Pm,n represents the transmission power of SU n on channel m; P
min

m,n and P
max

m,n represent the218

maximum and minimum allowable transmission power of SU n on channel m respectively. This constraint defines219

the upper and lower bounds for the transmitted power of the SU. In other words, the transmission power of the SU220

should meet two constraints: on one hand, it should not interfere with the normal use of the PU; on the other hand,221

it should meet the minimum allowable SINR required for transmissions. In the constraint (5f), Pm,k,n represents222

the interference power of SU n received by PU k on channel m, and δm,k represents the maximum allowable223

interference power of PU k on channel m. For any PU k, the total received interference power on the channel224

m must be kept below the maximum allowable interference threshold, i.e., the PU is not interfered by SUs on225

the channel. In the constraint (5g), ϕm represents the available bandwidth of channel m, and RT
m represents the226

transposed vector of Rm. This constraint ensures that the total network capacity of channel m should be less than227

or equal to its available bandwidth.228

4. Priority Assignment Based on Vehicle Traveling State229

In Section , we describe the problem of priority assignment. In Section , we give the detailed definition of priority.230

4.1 Problem Description231

In CR-IoV, when the system carries out the spectrum allocation, the current state of vehicle traveling should be232

considered. For example, if a vehicle is about to leave the communication range of the current base station, it233

should be assigned to a low priority for spectrum allocation.234

The traveling state of a vehicle at the current moment mainly includes direction, speed, acceleration and GPS235

coordinates. Besides, the traveling state also should considers the degree of geographical dispersion among vehicles236

and the communication capability of a vehicle.237

The current state information of each vehicle is collected by the current communicating base station. Then we238

carry out priority evaluation for different cognitive vehicle users to distinguish the priority weights for spectrum239

allocation.240
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For a SU n who initiates a service request, from the perspectives of the global state and local state, a compre-241

hensive priority evaluation score Priorityscoren is constructed by defining a vehicle traveling evaluation score242

Travelingscoren and a network utility score Utilityn for the SU.243

4.2 Priority Definition Based on Vehicle Traveling State244

Definition 1: Vehicle Traveling Evaluation Score245

According to the GPS coordinates, speed and acceleration, we define a vehicle traveling evaluation score246

Travelingscoren for a cognitive vehicle n as247

Travelingscoren =
1 + cos(θn)

4
· ( vmax − vn

vmax − vmin
+

1

1 + ean
) (6)

where θn denotes the angle between the current driving direction and the link connected the vehicle’s position with248

the base station’s position. Notation an denotes the acceleration of the vehicle n. Notation vn denotes the speed249

of the vehicle n. Notations vmax and vmin represent the maximum and minimum values of the diving speed. We250

assume that the vehicle speed is within the value interval [vmin, vmax].251

Obviously, a relatively large angle θn indicates that vehicle n will travel out of the coverage range of the base252

station in the future. Therefore, vehicle n with large θn should be given a relatively low spectrum allocation priority.253

We use formula 1+cos(θn)
2 to normalize the different weights of the angle θn to the value interval [0, 1]. In addition,254

a vehicle with high driving speed will quickly travel out of the coverage range of the base station in the future.255

Therefore, it should be given a relatively low spectrum allocation priority. The normalized formula vmax−vn
vmax−vmin

is256

used to describe the influence of vehicle driving speed on the priority. Similarly, a vehicle with high acceleration257

should be given a relatively low spectrum allocation priority. To normalize the value interval to [0, 1], formula258

1
1+ean is used to describe the influence of vehicle driving acceleration on the priority. Finally, to constrain the value259

of Travelingscoren within the value interval [0, 1], we use constant coefficient 1
2 to obtain the right side of Eq.260

(6).261

Definition 2: Network Utility Score262

We define a network utility score to evaluate the communication capability of cognitive vehicles. For cognitive263

vehicle n, its network utility score is defined as follows:264

Utilityn = log2(1 + SNRn) ·

∑
1≤n,n′≤N,n′ ̸=n

Dispersionn,n′

N − 1
(7)

where SNRn denotes the signal-to-noise ratio of the user n to receive the signal from the base station. Formula265 ∑
1≤n,n′≤N,n′ ̸=n

Dispersionn,n′ represents the global dispersion of user n within the coverage area of the base266

station.267

For the numerator of Eq. (7), we give the following detailed definition. The Dispersionn,n′ between two SUs268

n and n′ is defined as follows:269

Dispersionn,n′ =

{
1 Dn,n′ > εn

0 others
(8)

where εn is a dispersion threshold; notation Dn,n′ represents the average dispersion time between two SUs n and270

n′. First, the threshold εn is obtained by taking the median value of {Dn,n′ |1 ≤ n′ ≤ N,n′ ̸= n}. Second, the271

average dispersion time Dn,n′ is defined as272

Dn,n′ =

∫ T

0
βn,n′(t)dt

τn,n′
(9)

In Eq. (9), the communication dispersion state between two vehicles n and n′ is defined as βn,n′(t). When273

there exists communication interference between vehicle n and n′, we let βn,n′(t) = 0. It means that the two are in274

an ‘encounter’ state. On the contrary, when βn,n′(t) = 1, it means that the two are in a ‘scattered’ state. Thus, in a275
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time window T , the numerator of Eq. (9) represents the total dispersion time between user n and user n′. Besides,276

τn,n′ in the denominator denotes the total number of times that user n and user n′ are in the ‘scattered’ state in277

time window T . Obviously, the higher the value of Dn,n′ , the longer the time that the two users n and n′ are in278

the ‘scattered’ state. Thus, we conclude that the higher the global dispersion
∑

1≤n,n′≤N,n′ ̸=n

Dispersionn,n′ , the279

greater the probability that vehicle n has the chance to reuse the channel, which further leads to a high network280

utility.281

To sum up, a vehicle with a large network utility score in Eq. (7) means that its global communication capability282

is strong, so the vehicle should be given a high spectrum allocation priority.283

Definition 3: Comprehensive Priority Evaluation Score284

According to the vehicle traveling evaluation score TravelingScoren and network utility score Utilityn, we285

construct a comprehensive priority evaluation score PriorityScoren for the cognitive vehicle n below,286

Priorityscoren = Travelingscoren · Utilityn (10)

For a cognitive vehicle who requests to access the base station, the base station calculates the priority score287

by collecting the vehicle’s information. We rank all the scores from the largest to the smallest. Therefore, we can288

obtain a priority order list Priorityscore_list for all the cognitive vehicles in the current allocation task, which289

will be used in the following Section .290

5. Finder-MCTS Algorithm for Cognitive IoV Spectrum Allocation291

In the introduction, we mentioned that our paper will use MCTS to solve the problem of efficient spectrum alloca-292

tion for CR-IoV. MCTS is a classic reinforcement learning algorithm based on tree search. To distinguish it from293

the method proposed in our paper, we call the classic MCTS as Basic-MCTS. The Basic-MCTS offers a concise294

computation framework by recursively using a tree policy to expand the search tree towards high-reward nodes,295

and a default policy to perform the simulations for updating the estimated rewards and other statistics [21]. How-296

ever, due to the continuous expansion of search actions, the search scale of Basic-MCTS is often very large, which297

greatly affects its search speed. In addition, due to the neglect of environmental uncertainties, the random strategy298

adopted by Basic-MCTS in the simulation stage will produce a high variance, which reduces the search effect of299

Basic-MCTS.300

To improve the search speed and obtain a near optimal solution, we propose an algorithm named Finder-MCTS301

in this section. First, we construct a search tree vertically according to the comprehensive priority evaluation302

score defined in Definition 3 above. Meanwhile, the constraints defined in Section are also considered to reduce303

the search scale of the tree horizontally. Second, the uncertainty of the SUs’ spectrum occupation activities are304

included into the simulation strategy. We give the bias estimation of reward in different scenarios in the simulation305

stage so as to approximate the real environment and accelerate the convergence of tree search.306

Thus, in Finder-MCTS, the first step is to use Markov decision process (MDP) to construct Monte-Carlo tree307

computation framework (Section ). Then, with respect to the state prediction, we give a DNN-based environment308

state predictor–ESP (Section ). Finally, we describe the detailed steps of Finder-MCTS algorithm (Section ).309

5.1 Finder-MCTS’s Computation Framework310

The problems solved by the MCTS are commonly formalized by the Markov decision process (MDP), in which311

we take the base station as the spectrum scheduling agent and use the link capacity formulated in Eq. (2) as the312

value of the reward Q when a SU occupies a channel. Let S and A denote the MDP state space and action space,313

respectively. F : S × A → S denotes the MDP transition function from a state-action pair to the next state. The314

state transition function fESP is given by a deep neural network (DNN) simulator in Section . The definitions of315

the MDP state space and action space are described as follows,316
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Figure 2: An example of search steps in Finder-MCTS.

S = {sv|sv, φv, ξv)} (11)
317

A = {am|1 ≤ m ≤M} (12)

In Eq. (11), the MDP state is composed of two parts: λv denotes a vector of remaining bandwidth of M318

channels under the base station, with sv = (λv = (λ̄1, ..., λ̄m, ...λ̄M )v; λ̄m denotes the remaining bandwidth of319

m-th channel. φv denotes the number of service requests to be allocated. ξv describes the total bandwidth requests320

of all φv cognitive vehicles. In addition, in Eq. (12), the action space is a set composed of whether the number of321

M channels are allocated, in which the action am denotes that the agent allocates the channel m to a vehicle that322

enters into the priority-based allocation sequence and is ready to be scheduled by the base station currently.323

A Monte-Carlo search tree consists of nodes and edges. A node v is a tree node that corresponds to the MDP324

state sv, and the edge connecting a parent node and a child node in the tree represents an action that causes the state325

transition. Each node v in the tree holds a node state, which contains three types of statistics: visit count (Nv),326

MDP state (sv), and cumulative reward (Qv) received by node v.327

The specific search steps are shown in Figure 2.328

1) Create a root node of the search tree and initialize the node state. Assume that the root node is denoted by v329

and the node state is {Nv, sv, Qv}.330

2) Allocate the spectrum resources for vehicles according to the priority order list Priorityscore_list defined331

in Definition 3, and extend the child node while update the node state. Each layer’s tree expansion represents the332

spectrum allocation for a vehicle and each allocation process involves many iterations. Take the root node v in333

Figure 2 as an example. When the channel assignment action of vehicle ID3 is a1, the search tree extends down to334

the child node v′ and update the node state through iterative calculation (i.e., sv′ = fESP (sv, a1)).335

3) When the tree expansion reaches to the termination condition of iteration (i.e., the second users or the336

available spectrum resources are all allocated), an optimal channel allocation matrix A∗ in the current allocation337

period is returned. For example, assume that when reaching to the node v′′′ in Figure 2, the iteration ends. The338

black arrow lines direct an allocation path v → v′ → v′′ → v′′′. Then the corresponding actions constitute a339

feasible allocation policy set {a1, a5, a1}, which can be converted to a channel allocation matrix AN×M as an340

output.341

5.2 DNN-based Environmental State Predictor—ESP342

Due to the uncertainty of the PUs’ spectrum occupancy activities, when the tree is expanded from one node to the343

next in Section , the expansion will be not stable, i.e., given a state and an action, the next state is uncertain. This344

uncertainty is caused by the unknown environment of IoV. Therefore, to limit the expansion scale of the MCTS tree345

horizontally and speed up the search, it is necessary to gradually learn to approach to the real environment of IoV346

when doing spectrum allocation. This section presents an offline environment state predictor (named ESP) based347

on a deep neural network (DNN).348
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Selection Expansion Simulation Backpropagation

(a) (b) (c) (d)

Policy

Repeat

Figure 3: An iterative computation process of Finder-MCTS.

Note that, to obtain the ESP, enough training data are needed. Thus, first during the cold-start phase of Finder-349

MCTS (i.e., the algorithm just starts running), we do not rely on ESP. This does not affect the channel allocation350

solution of Finder-MCTS. After a period of time in the cold start phase, our base station can obtain and cumulate351

large numbers of ‘state-action transition pairs’. Subsequently, we input these ‘state-action transition pairs’ into ESP352

continuously as the training data to obtain a state transition function fESP , which is an offline training process.353

Once we have the fESP , the Finder-MCTS could converge fast due to the reduction in branching. The above354

training is done by DNN.355

The network structure of DNN consists of one input layer, three hidden layer and one output layer. In this356

paper, we set the learning rate of DNN to 0.05 and the activation function of DNN is the rectified linear unit357

function (ReLU). To optimize the neural network parameters, we use the mini-batch gradient descent method [22].358

In the DNN, the training label is the state sv′ , which is the state of the corresponding expansion child node v′ of359

node v. ESP is used to obtain the prediction state ŝv′ . The loss function of ESP is,360

lossESP =
1

B

∑
B

(∥sv′ − ŝv′∥2) (13)

where B represents the batch size of mini-batch gradient descent. In the experiment we set B = 64, with indicating361

that 64 samples are selected in each iteration. Notation ∥.∥2 represents the L2 norm. When lossESP converges, we362

let the DNN network parameter wESP update.363

After we obtain the ESP function, based on the selected action am and MDP state sv , ESP can give the MDP364

state of its expanded node ŝv′ ,365

ŝv′ = fESP (sv, am|wESP ) (14)

5.3 Finder-MCTS Algorithm Based on Action Space Pruning and Scenario Simulation366

Finder-MCTS requires to execute the following four steps: selection, expansion, simulation, and backpropagation367

iteratively to complete an computation process, which are shown in Figure 3. In Figure 3, the black circles indicate368

the nodes involved in each step and the red arrow lines indicate the actions corresponding to each step. In subfigure369

(c), policy usually refers to the random selection action extended at each step of the simulation process. We usually370

call step (a) selection and step (b) expansion together as the tree policy. Specifically, the detailed procedures and371

descriptions are give in the following steps (a)-(d) and in Figure 4.372

(a) Selection. Each iteration starts from the root node. When the algorithm has to choose to which child node373

it will descend, it tries to find a good balance between exploitation and exploration. We use the upper confidence374

bound for tree (UCT) [23] to recursively select child nodes. The selection criterion of the optimal child node is:375

argmax
v′∈child(v)

(
Qv′

Nv′
+ c ·

√
ln(Nv)

Nv′
) (15)
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Figure 4: The flow chart of Finder-MCTS.

where c ≥ 0 is a weight coefficient used to adjust the exploitation and exploration. We set c = 0.8 in the experiment376

through many tests. Notation child(v) represents the set of child nodes with v as the parent in the tree. Nv′ and377

Nv represent the total number of times that the child node v′ and its parent node v have been visited iteratively.378

Qv′ represents the cumulative reward obtained by node v′. Note that, the selected child node should be expandable379

(i.e., have unvisited child node) and represent a non-terminal state. Next, the algorithm treats the child node with380

the largest value of UCT as the current node for the next expansion.381

(b) Constraint Oriented Expansion. Finder-MCTS judges whether the number of visits of the current node is382

0. If visit count N = 0, the algorithm goes to step (c) directly. If the visit count N ̸= 0, the algorithm enumerates383

the available actions. However, if it is just a simple enumeration, the number of available actions in the next layer384

is M . As the tree expands, a huge search tree will be built. The computational complexity grows geometrically385

with the number of SUs to be allocated. Thus, here we give the constraint oriented expansion.386

In the constraint oriented expansion, we prune the action space according to the constraint conditions defined387

in Section -2) so as to obtain all available actions from the current node. And then add new nodes to expand the388

tree and let the current node be a new child node which is randomly selected after expansion.389

Specifically, we use A(n, v) represent the set of available actions starting from the node v, which is used for390

the next round of channel allocation for the n-th SU. That is to say A(n, v) is an interference-free action space of391

a SU. The detailed implementation steps of the constraint oriented expansion are described in Algorithm 1.392

In Algorithm 1, we use three main steps to perform action pruning. First, considering the channel availability,393

we introduce the channel availability matrix L to prune the set of actions. We map the elements of ln,m = 1394

in the channel availability matrix for vehicle n to the available action set (Lines 2-6 in Algorithm 1). Second,395

considering that the vehicle IDn currently to be allocated should not share the same channel with a vehicle having396

communication interference, we introduce the SU-SU interference matrix C for the tree pruning. The algorithm397

traverses the elements in the channel allocation matrix A and makes a judgement on whether an′,m = 1 and398

cn,n′,m = 1 hold at the same time. If they hold at the same time, am is removed from the action set (Lines 7-15399

in Algorithm 1). Next, in each iteration, the algorithm needs to make a judgement on whether constraint (1) and400

constraints (5-a) ∼ (5-g) hold. If the available channel m for the vehicle currently to be allocated does not satisfy401

these constraints, action am needs to be removed from the set of actions (Lines 16-20 in Algorithm 1). Finally, If402

A(n, v) = ∅, the algorithm will skip the current allocation and wait for the next round of allocation (Lines 21-23403

in Algorithm 1).404

(c) Simulation Based on Different Scenarios. From the above step (b), we know that if the visit count of the405

current node is zero, we will perform a simulation from the current node (i.e., the newly expanded node, denoted406

12



Wireless Communications and Mobile Computing

Algorithm 1 Constraint Oriented Expansion for Vehicle IDn

Input:
L - channel availability matrix
C - SU-SU interference constraint matrix
A - channel allocation matrix
γm - the maximum allowable interference level of channel m
ϕm - the available bandwidth of channel m
δm,k - the maximum allowable interference power of PU k on channel m

Output:
A(n, v) - the action space/set of vehicle IDn under the current node v

Function Action(n, v)

1: A(n, v)← ∅
2: for each ln,m in the n-th row of matrix L do
3: if ln,m = 1 then
4: A(n, v)← am
5: end if
6: end for
7: for each cn,n′,m in 1 ∼ n columns of the n-th row of matrix C do
8: for each an′,m in A do
9: if cn,n′,m = 1 and an′,m = 1 then

10: if am ∈ A(n, v) then
11: remove am fromA(n, v)
12: end if
13: end if
14: end for
15: end for
16: for each am inA(n, v) do
17: if the available channel m for the vehicle IDn does not satisfy the constraint (1) and constraints (5-a) ∼ (5-g) then
18: remove am fromA(n, v)
19: end if
20: end for
21: ifA(n, v) = ∅ then
22: the algorithm does not perform the allocation for vehicle IDn and waits for the allocation of the next user according to the

Priorityscore_list
23: end if

by ṽ)1 to the terminal node (denoted by ṽ∆). Here, the terminal node refers to the node that the descending arrives407

at when the SUs or the available channel resources have been all allocated. Usually, the simulation uses a random408

search strategy to generate a reward Qṽ∆
at the final leaf node ṽ∆. However, the time-varying property of PUs’409

spectrum occupancy activities makes the actual available spectrum resources uncertain. This uncertainty will have410

potential impacts on the reward evaluation for the SU to be allocated in IoV.411

Therefore, in this paper, the duration of network service for a PU (denoted by τ ) is included in the simulation412

when doing reward evaluation. Reference [24] pointed out that the duration of network service for PU in each413

channel obeys a log-normal distribution. The probability density function (PDF) is:414

f(τ ;µ, σ) =
1

τσ
√
2π

e
−(ln τ−µ)2

2σ2 (τ > 0) (16)

The parameters (µ, σ) are in milliseconds (ms) and the values used in this paper are (2.47, 1.88) [24].415

Through random sampling from the above distribution, we can obtain different scenarios of the service durations416

for the PUs at each layer in the simulation stage. Each sampling corresponds to a scenario. Since there are infinite417

scenarios when sampling, here we sample number of χ times at each layer of simulation to control the computation418

scale. Thus, a scenario set is formed, denoted by π̂ = π1, π2, ..., πi, ..., πχ,. In the experiment, we set χ = 9. Next,419

1We use symbol ∼ to label the nodes in the stage of simulation.

13



Wireless Communications and Mobile Computing

we define a stochastic bonus to adjust the reward evaluation according to different service durations, the resource420

supply and demand situation, and the utilities of SUs.421

Definition 4: Stochastic Bonus422

Assume that the channel m matches the vehicle IDn and the tree expands from node ṽ to node ṽ′ in the423

simulation stage. Then, we define a stochastic bonus for node ṽ as E
i∈π̂

(H ṽ
n,m(i)), in which E represents the424

expectation of stochastic bonus obtained by vehicle IDn in χ scenarios. We have425

H ṽ
n,m(i)) = tanh(Utilityn) · τ−1

i ·
(

λ̄m

Count(Lm)− Count(Am)

)
(17)

where τi (1 ≤ i ≤ χ) denotes one of the samplings based on distribution f(τ ;µ, σ). The larger the value of τi,426

the longer the channel occupied by the PUs in this sampling. It indicates the bonus of vehicle IDn when doing427

allocation will be low. Notation Utilityn > 0 represents the network utility score of vehicle IDn (Definition 2),428

which reflects the communication capability of vehicle IDn and is used as a weight coefficient here. We utilize the429

hyperbolic tangent function tanh(·) to normalize the value of Utilityn to the interval [0, 1]. When the Utilityn is430

large, the weight coefficient is closer to 1, which indicates that the vehicle IDn with strong communication ability431

tends to have high bonus. Besides, λ̄m

Count(Lm)−Count(Am) measures the remaining minimum average bandwidth432

available to vehicle IDn currently. Count(Lm) records the number of elements in the m-th column with value of433

1 in matrix L. Thus Count(Lm) − Count(Am) describes the maximum number of allowable access vehicles on434

channel m without considering the interference matrix C and the available bandwidth ϕm.435

In summary, if a vehicle with strong communication capability, the PUs with low service durations, and the436

remaining resources are enough, the stochastic bonus will be high.437

Based on the above Eq. (17), we have an adjusted reward Qṽ for node ṽ in the simulation stage,438

Qṽ = r(n,m) + E
i∈π̂

(H ṽ
n,m(i)) (18)

where rn,m refers to the immediate reward that channel m is allocated to vehicle IDn (defined in Eq.(2)). For439

simplicity, we use notation Qṽ with omitting the label of n and m.440

When the simulation reaches to the terminal node ṽ∆, we can get the simulation cumulative reward Qṽ∆ of all441

nodes on the simulation path from ṽ to ṽ∆. We have442

Qṽ∆ =

ṽ∆∑
ṽ

{rn,m + E
i∈π̂

(H ṽ
n,m(i))} (19)

(d) Backpropagation. The aim of backpropagation is to update the empirical information of the prior explo-443

ration before the next iteration, , which is shown in Figure 5. When an iteration reaches to the terminal node ṽ∆,444

according to Eq. (19), we get the simulation cumulative reward Qṽ∆ for backpropagation.445

In this way, the reward of backpropagation can include the reward evaluation of all expanded nodes on the446

simulation path, with reflecting the overall spectrum allocation performance of simulation in the current iteration.447

Meanwhile, the algorithm updates the node state on the path from the root to the expanded node according to the448

following rules:449

Nv ← Nv + 1 (20)
450

Qv ← Qv +Qṽ∆
(21)

To sum up, we provide the pseudocode of Finder-MCTS in Algorithm 2. The Finder-MCTS algorithm itera-451

tively executes functions such as Treepolicy, Simulation, and Backpropagation to explore different spectrum452

allocation schemes (i.e., Am in ΛL,C). It finally finds the optimal spectrum allocation scheme A∗ in the current453

network.454
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Figure 5: Backpropagation of Finder-MCTS.

Figure 6: The experimental area imported from OpenStreetMap.

6. Experimental Results and Analysis455

In this section, first we give the detailed simulation settings, including the vehicular dataset generation and some456

parameters in our proposed method. Second, we compare Finder-MCTS with other types of methods in terms of457

channel utilization ratio (CUR), average link capacity (ALC), and convergence time. Finally, we test the perfor-458

mance of Finder-MCTS compared with other MCTS algorithms’ variations.459

6.1 Simulation Settings460

Our experiments are done by using the simulation of urban mobility (SUMO) simulator. All the simulations are461

conducted in a PC with Intel Core CPU i9-9820X 3.50GHz processor, 64GB RAM. We export a map of area near462

Pudong Airport in Shanghai from OpenSteetMap, which is shown in Figure 6. The latitude of the experimental area463

is between [31.19177, 31.19742]. The longitude is between [121.31134, 121.31853]. In this area, we randomly464

select four base stations (depicted by red star marks). The locations of these base stations and different communi-465

cation radius are listed in TABLE 1. Each base station can observe the traffic flows and obtain the passing vehicles’466

information, including the vehicle ID, location, speed, timestamp and acceleration.467
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Table 1: Information of the four base stations.

Name Latitude Longitude Communication Radius
BS1 31.19554 121.31274 500m
BS2 31.19604 121.31619 500m
BS3 31.19327 121.31462 500m
BS4 31.19363 121.31713 500m

Table 2: Parameters used in SUMO.

Parameters Car Bus Truck
the maximum speed 15(m/s) 13(m/s) 10(m/s)
the minimum speed 1(m/s) 1(m/s) 1(m/s)
the minimum gap
between vehicles

2.5(m) 2.5(m) 2.5(m)

the maximum acceleration 3(m/s2) 1.5(m/s2) 1.5(m/s2)
the maximum deceleration 7.5(m/s2) 4(m/s2) 4(m/s2)
the maximum deceleration

for emergency breaking
9(m/s) 7(m/s) 7(m/s)

Assume that each base station has M = 10 available spectrum channels. The bandwidth of each channel is set468

to 20MHz. We import 100 cognitive vehicles into the simulation scene. Each vehicle randomly proposes a service469

request to the base station with probability of 50% at each allocation time window. Suppose that the duration of470

network service for each vehicle is equal to the allocation time window. In SUMO, we set the parameters for471

the different types of vehicles in TABLE 2. Compared with the moving vehicle, a PU can be regarded as a static472

point in the experiment. We set a total of K = 30 fixed points as PUs under the four base stations. Each PU473

randomly occupies a part of the communication bandwidth (MHz), which subjects to U [1, 10] uniform distribution.474

At each allocation time window, we randomly let 70% PUs occupy the nearest base station’s available channels.475

The duration of network service for a PU is chosen according to Eq.(16). The spectrum demand of each SU n are476

randomly selected in [1,3] MHz. The maximum allowable interference level on channel m γm is −114dBm. The477

level of background noise on channel mNm is 1dB. The minimum transmission power and maximum transmission478

power are P
min

m,n = 20dBm and P
max

m,n = 25dBm respectively. The maximum allowable interference power of PU479

k on channel m δm,k is 5dB.480

In the experiment, the protection radius of a PU (R̃k,m) is set to 100m. We let the the transmit power level of SUs481

be generated from the set [20dBm, 21dBm, 22dBm, 23dBm, 24dBm, 25dBm]. Thus, the interference radius of a482

SU (Rn,m) corresponding to the above power levels are 100m, 150m, 200m, 250m, 300m and 350m. The transmit483

power of a base station is set to 46dBm. For simplicity, assume that the transmit power is equal to the transmission484

power and let the channel gain in the wireless space be constituted by the path loss. We define the path loss between485

SU n and base station j as PL(n, j) = 34 + 40lg(dnj), where dnj denotes the Euclidean distance between SU n486

and base station j. Besides, we define the path loss between SU n and PU k as PL(n, k) = 40 + 24.4lg(dnk)[25],487

where dnk denotes the Euclidean distance between SU n and PU k. The received signal power level is given by the488

product of the transmit power and the channel gain. Thus the parameters Pm,n,k, Pm,k,n, and Pm,n can be obtained489

through the above calculations.490

6.2 Comparison with Other Types of Methods491

Under the same simulation settings, we compare our Finder-MCTS with three other algorithms, i.e., the game492

theory-based method [6], particle swarm optimization-based (PSO-based) method [11], and DQN-based method493

[26], in terms of channel utilization ratio, convergence time and average link capacity of SUs.494
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Figure 7: Comparison with three other methods in terms of average CUR, ALC and convergence time.

The channel utilization ratio (CUR) refers to the occupancy ratio of the available spectrum resources in the495

current base station. Besides, the average link capacity (ALC) is defined as follows:496

ALC =
1

N
·

N∑
n=1

M∑
m=1

(an,m · rn,m) (22)

If a method has high CUR, high ALC and low convergence time, it means that the method can not only make497

full use of the spectrum resources, but also can enable SUs to obtain better communication service quality quickly.498

First, after the simulations are all done in the four base stations, we compare the average CUR, ALC, and499

convergence time of the proposed Finder-MCTS with three other methods, shown in Figure 7. From the average500

CUR performance in Figure 7 (a), we can see that Finder-MCTS performs the best, the second-best is DQN-based501

method, and the worst is PSO-based method. From the average ALC performance in Figure 7 (b), we can see that502

Finder-MCTS performs the best, the second-best best is DQN-based method, and the worst is game theory-based503

method. From the average convergence time performance in Figure 7 (c), we can see that Finder-MCTS performs504

the best, the second-best best is DQN-based method, and the worst is game theory-based method.505

Based on the above results, we give the following analysis. Because the convergence of the Nash equilibrium506

solution is negatively related to the size of the problem, the game theory-based method’s convergence performance507

is poor. When the game theory-based method reaches convergence, the CUR performance of the system can508

be approximately optimal, however the equilibrium of the multi-user game makes the ALC value relatively low.509

Besides, the PSO-based method is easy to fall into the local optimal solution, its average CUR and average ALC510

perform relatively poor. Since the complicated parameters’ setting of PSO, its average convergence time becomes511

longer as the scale of the problem becomes larger. Moreover, after the exploration of actions through reinforcement512

learning, DQN-based method can obtain a higher quality spectrum allocation solution, and the performance of513

average CUR and ALC is second only to Finder-MCTS. However, the convergence time of DQN-based method514

is higher than Finder-MCTS due to the long-term exploration and value updating, although enough experience515
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Figure 8: Performance comparison with varying the number of SUs.

information learned through online learning can speed up the convergence time of DQN to some extent. By contrast,516

Finder-MCTS based on offline training and online learning has an average 36.47% improvement in convergence517

time than other methods. In terms of ALC, Finder-MCTS has an average advantage of 18.24% over other methods.518

At the same time, the channel utilization of Finder-MCTS is 9.00% higher than other methods on average.519

Second, since the number of SUs in the coverage area of each base station is time-varying, it is necessary to520

observe the performance changes under different SUs’ scales. The results are shown in Figure 8. Here, notice that521

in Figure 8, each depicted point in the curve is an averaged value statistically. For example, as to the results that dis-522

tribute in the scale interval (p1, p2] of x-axis, we average these results and depict the averaged value corresponding523

to point p2.524

Figure 8 (a) shows the relationship between the number of SUs and CUR. In general, as the number of SUs525

increases, the CUR curve increases until it gradually converges. In addition, we find that when the number of SUs526

is small, the game theory can give a solution with high CUR. However, with the increase of SUs, Finder-MCTS527

and DQN-based method show obvious advantages in resource utilization. The reason behind that is when the scale528

of SU becomes large, the combination of historical experiences and online exploration can greatly improve the529

quality of the solution. In contrast, the game theory-based equilibrium quality for large-scale SU problem has530

declined. Also, the PSO-based method often converges to a local optimal solution and its CUR performance cannot531

be guaranteed.532

Figure 8 (b) depicts the relationship between the number of SUs and ALC. It is obvious that as the number of533

SUs increases, the ALC value decreases since the available spectrum resources of the base station side are limited.534

Besides, we find that when the number of SUs is small, the game-based method shows a good performance in535

ALC. However, as the number of SUs increases, Finder-MCTS shows an obvious advantage. This because when536

the scale of SUs becomes large, finding an optimal solution is hard for the game-based method. Moreover, since537

the PSO-based method is hard to reach the global convergence, the ALC performance is relatively low with the538

number of SUs increasing.539

Figure 8 (c) shows the simulation results of the relationship between the number of SUs and the convergence540

time. First, we can see that the convergence time of game theory-based and PSO-based method shows an obvi-541

ous growth trend as the number of SUs increases, while the convergence time based on DQN and Finder-MCTS542

rises moderately. The main reason is that the Finder-MCTS and DQN-based methods gradually fit the channel543

state model after continuous learning, thereby greatly improving the search efficiency. The convergence time of544

Finder-MCTS is reduced by 65.23% and 18.85% compared with the game theory-based method and the PSO-based545

method. In the long run, Finder-MCTS shows a short and gentle convergence time performance in the dynamic546

environment.547

All above phenomena verify the advantage of Finder-MCTS in solving spectrum allocation in IoV. Finder-548

MCTS can effectively complete the rapid learning of the approximate optimal allocation solution in a time-varying549

environment, which greatly improves the available spectrum utilization ratio of the current base station system.550
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Figure 9: Comparison with two types of MCTS algorithms’ variations in terms of average CUR, ALC and conver-
gence time.

6.3 Comparison with Other MCTS Algorithms’ Variations551

In this part, we compare Finder-MCTS with other MCTS algorithms’ variations. We show why we consider the552

priority mechanism and simulation under different scenarios.553

We set two basic types of MCTS-based spectrum allocation modes: random-order-based allocation mode and554

priority-based allocation mode, which are called as R-MCTS and P-MCTS respectively. In R-MCTS, compared555

with Finder-MCTS, both priority and the uncertainty of PUs’ service durations are not taken into consideration.556

In P-MCTS, compared with Finder-MCTS, only the uncertainty of PUs’ service durations is not taken into con-557

sideration. The simulation results are shown in Figure 9. We can see that Finder-MCTS performs the best, the558

second-best is P-MCTS, and the worst is R-MCTS. According to the above results, we give the following analysis.559

From Figure 9 (a), we can see that the CUR performance of P-MCTS is superior than R-MCTS. This gap560

illustrates that the introduction of priority evaluation will improve the ratio of the spectrum utilization (about 9.12%561

increase). Meanwhile, Finder-MCTS has the best CUR performance. In the long run, the service duration τ of PU562

on each channel will give each allocated SU differentiated stochastic bonus. Hence, based on the uncertainty of563

the channel state occupied by the PUs, we introduce the factor τ that affects the supply-demand ratio of spectrum564

resources into the reward evaluation during each expansion step of the simulation process. We learn about Finder-565

MCTS is better (about 4.08% increase) than P-MCTS on ALC. Hence, we can conclude that the optimization of the566

stochastic simulation process contribute to improve spectrum usage efficiency of CR-IoV from a global perspective.567

Figure 9 (b) depicts the different performances of the three methods in ALC performance. With the help of568

priority evaluation, P-MCTS has increased by 6.73% compared with R-MCTS. The ALC performance of Finder-569

MCTS has increased by 10.19% compared with P-MCTS by evaluating the uncertainty of PUs’ service durations.570

Figure 9 (c) shows the average convergence time of three methods. Owing to the priority evaluation, P-MCTS571

has a 22.89% advantage than R-MCTS. This characterizes the positive impact of the differentiation priority eval-572

uation on the algorithm convergence time. Secondly, under the same setting, with the help of reduction of action573
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space in each descending layer, Finder-MCTS achieves a faster convergence speed (about 46.69% increase and574

30.86% increase) than R-MCTS and P-MCTS.575

7. Conclusion576

In this paper, we investigate the spectrum allocation in CR-IoV by modeling a optimization problem to maximize577

the link capacity of vehicle users. What’s more, we propose a method named Finder-MCTS to solve the optimiza-578

tion problem. We show that Finder-MCTS can learn to adapt and update allocation strategy for transmission under579

dynamic network environment. The experimental results show that Finder-MCTS is more efficient in convergence580

speed, and it achieves good performance gain in spectrum utilization and link capacity compared with other pop-581

ular strategies, especially when the number of vehicle users becomes more. Besides, we have also confirmed the582

effectiveness of priority evaluation and uncertainty evaluation of the PUs’ service durations by comparing with two583

variations of MCTS. In the future work, we will further study the cooperative spectrum allocation problem of IoV584

under a complex scenario with space/air/ground communications and networking.585
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Algorithm 2 Finder-MCTS
Input:

Priorityscore_list
Output:

optimal channel allocation matrix A∗

Function F inder −MCTS(v, Priorityscore_list)
1: load network fESP

2: create root node v with state sv
3: create channel allocation buffer ΛL,C

4: while node v is a terminal node do
5: initialize a matrix AN×M with all elements equaling to 0
6: ṽ ←− Treepolicy(v)

7: Qṽ∆ ←− Simulation(sṽ , ṽ)

8: if am = 1 for vehicle IDn then
9: an,m=1

10: else
11: an,m=0
12: end if
13: update and put AN×M in ΛL,C

14: Backpropagation(v,Qṽ∆ )

15: end while
16: return A∗ = argmax

AN×M∈ΛL,C

{U(AN×M , R)}

Function Treepolicy(v)

17: while v is nonterminal do
18: if v is not a leaf node then
19: v′ ← Bestchild(v)

20: Treepolicy(v′)

21: else
22: if Nv = 0 then
23: ṽ ← v

24: else
25: Expand(v)

26: end if
27: end if
28: end while

Function Bestchild(v)

29: return argmax
v′∈child(v)

(
Qv′
Nv′

+ c ·
√

ln(Nv)

Nv′
)

Function Expand(v)

30: execute Action(n, v)

31: choose am ∈ A(n, v) randomly
32: generate a new child v′ of node v

33: initialize Qv′ = 0

34: sv′ = fESP (sv , am)

35: Treepolicy(v′)

Function Simulation(ṽ)

36: initialize i = 0,Qṽ=0
37: while ṽ is not a terminal node ṽ∆ do
38: choose am ∈ A(n, ṽ) randomly
39: sṽ′ ← f(sṽ, am),ṽ′ ← ṽ

40: calculate rn,m according to Eq. (2)
41: Qṽ′ ← Qṽ + rn,m +Bonus (Bonus is calculated based on Eq. (17)-(19))
42: i← i+ 1

43: end while
44: return Qṽ∆ when node ṽ reaching to the terminal node ṽ∆

Function Backpropagation(v,Qṽ∆ )

45: while node v is not null do
46: Nv ← Nv + 1, Qv ← Qv +Qṽ∆

47: v ← parent of v

48: end while
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