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Finder-MCTS: A Cognitive Spectrum Allocation
Based on Traveling State Priority and Scenario

Simulation in IoV

Abstract—With the increasing number of intelligent connected
vehicles, the problem of scarcity of communication resources
has become increasingly obvious. It is a practical issue with
important significance to explore a real-time and reliable dynamic
spectrum allocation scheme for the vehicle users, while improving
the utilization of available spectrum. In this paper, we firstly
model the spectrum resource allocation problem as a binary
integer linear programming problem (BILP) with constraints by
introducing cognitive radio into the internet of vehicles (IoV).
The optimization goal is maximizing the total link capacity of
vehicle users. Then, we proposed a spectrum allocation method
that integrates offline learning with online search, named Finder-
MCTS. This method mainly consists of two stages. Initially,
Finder-MCTS gives the allocation priority of different vehicle
users in the current allocation cycle based on the vehicle’s local
driving status and global communication status. Furthermore,
Finder-MCTS can search for the approximate optimal allocation
solutions online according to the priority and the environment
state model of the base station, which learned offline through
DNN. In the experimental section, we use SUMO to simulate
real traffic flow and communication scenarios. Numerical results
show that our proposed Finder-MCTS has 36.47%, 18.24%, 9.00%
improvement on average than other existing methods in conver-
gence time, link capacity and channel utilization, respectively.
In addition, we verified the effectiveness and advantages of
Finder in convergence time, link capacity and channel utilization,
respectively, compared with two versions of MCTS.

Index Terms—Internet of Vehicle (IoV), cognitive radio, dy-
namic spectrum allocation, Monte-Carlo tree search (MCTS)

I. INTRODUCTION

Recently, as a promising technology, internet of vehicles
(IoV) has attracted the attention of governments and enter-
prises around the world, to serve the smart city. The moving
vehicles can be regarded as mobile terminals equipped with
advanced network components, such as wireless network in-
terfaces, on-board sensors, which provide many personalized
services by accessing the internet. These vehicle services (e.g.,
road condition broadcasts, dangerous event predictions) have
high requirements for data transmission and communication
quality. Although 5G technology is becoming popular and
growing rapidly, the available spectrum resources have not
increased simultaneously. So far, the spectrum resources of
6GHz and below 6GHz have almost been allocated [1]. More-
over, the spectrum resources at the base stations are usually
allocated to the calls and traffic services of mobile phone users
first. Thus, the scarcity of spectrum resources and the low
utilization of frequency bands are critical issues hindering the
development of IoV.

Currently, as an effective solution to the underutilized
problem of spectrum resources, cognitive radio (CR) can

reuse the idle spectrum resources through dynamic spectrum
access technology. In CR networks, network users are divided
into two types: primary users (PUs) and secondary users
(SUs). PUs have the high priority to use the spectrum in
the authorized frequency bands. SUs can dynamically access
spectrum holes opportunistically and use available spectrum
resources, which can enhance the spectrum utilization. There-
fore, inspired by the CR technology, we let vehicles equipped
with CR functions and form a cognitive radio-based internet
of vehicles (CR-IoV). We utilize CR to help solve the low
utilization of frequency bands in IoV.

In CR-IoV, the system includes PUs (composed by mobile
phone users) and SUs (composed by vehicles equipped with
CR functions). However, in reality, vehicle users with high
mobility will cause frequent changes in the network topology.
The availability of spectrum will also change with the acti-
vation time and channel occupancy of PUs. Hence, how to
meet the real-time and reliable requirements when solving the
dynamic spectrum allocation problem under a time-varying
environment is an significant challenge.

There are many previous studies about dynamic spectrum
allocation in mobile wireless networks. The most popular
studies can be mainly classified into four categories: (1)
traditional optimization theory-based allocation methods [2],
[3]; (2) game theory-based allocation methods [4]–[6]; (3)
swarm intelligence optimization-based allocation methods [7]–
[11]; (4) machine learning-based allocation methods [12]–[17].
Although the above methods can solve the spectrum allocation
problem, there exist many disadvantages. First, when the
constraints are complex, traditional optimization theory and
game theory are not suitable for quickly solving the large-scale
dynamic planning problems. Second, the swarm intelligence
optimization is easy to fall into the local optimum [18].
Besides, the effective parameter settings and selection in the
swarm intelligence optimization is also complex. Recently,
deep reinforcement learning (DRL) algorithms have been
proved to solve complex dynamic decision-making problem
with high-dimensional state and action space. It can learn the
potential regularities in the environment with the help of the
idea of trial and error, thereby assisting the intelligent decision-
making. However, this type of machine learning-based method
also exists some limitations, such as slow learning speed, poor
convergence, and bad self-adaption ability. Thus, in this paper,
we propose a new cognitive spectrum allocation method based
on traveling state priority and different scenarios specially for
IoV in this paper.

First, especially in IoV, we should consider the travel-
ing/moving state of a vehicle. A vehicle that is about to leave



Sa
mp
le
 P
ro
of

2

the coverage area of a base station should have relatively
low spectrum allocation priority. Vehicle users with different
traveling state, such as location, speed, acceleration, commu-
nication capabilities, should have different opportunities to
obtain spectrum resources. Thus, in this paper, we consider
the priority assignment based on vehicle traveling state when
doing spectrum allocation.

In addition, in this proposed new method, we choose Monte-
Carlo tree search algorithm (MCTS) to model our problem.
Traditional model-free based deep reinforcement learning al-
gorithms (e.g., deep Q network, soft actor-critic) often require
a large amount of samplings and learn strategies from past
experiences with the help of neural networks. However, model-
based deep MCTS can not only use deep neural networks to
fit the environment model from experience data, but also can
simulate a variety of possible future trajectories for evaluation
through the expansion of the tree structure, so as to choose
more promising directions to explore the best policy. In this
paper, through designing to simulate different scenarios, we
improve the learning efficiency and reduce the searching space
compared with traditional MCTS methods.

Our main contributions can be summarized as follows:
• We design a priority assignment rule based on vehicle

traveling state for spectrum allocation. Through defining a
vehicle traveling evaluation score and a network utility score,
we obtain a comprehensive priority evaluation score for each
vehicle. According to the priority score, we allocate available
spectrum resources from the highest priority to the lowest
vehicle user, which can improve the allocation performance
when doing dynamic spectrum allocation in IoV.

• Combining with the above priority score, we propose
a cognitive spectrum allocation method based on travel-
ing state priority and different scenarios specially for IoV,
named Finder-MCTS. We model the problem of spectrum
allocation as a binary integer linear programming problem
(BILP) with constraints. Meanwhile, through designing a
constraint oriented tree expansion and scenario simulation
mechanism, Finder-MCTS can give an approximate optimal
solution quickly and improve the link capacity of V2I (vehicle
to infrastructure) communication in the network.

• We conduct a number of simulations on real-world scenar-
ios and traces to evaluate the performance of our algorithms
by SUMO. Numerical results show that our proposed Finder-
MCTS has 36.47%, 18.24%, 9.00% improvement on average
than other methods in convergence time, link capacity and
channel utilization, respectively. In addition, Finder-MCTS
also has a significant enhancement in convergence time, ALC
and CUR, respectively with the aid of priority evaluation,
solution space optimization and uncertainty evaluation of PUs’
service duration, compared with the two versions of MCTS.

The remainder of this paper is organized as follows. In
Section II, a review of related work is provided. In Section III,
the system scenario and problem formalization are presented in
detail. In Section IV, the priority assignment based on vehicle
traveling state are described. In Section V, the Finder-MCTS
method for cognitive IoV spectrum allocation are proposed.
In Section VI, simulations are carried out to demonstrate
the effectiveness of the proposed Finder-MCTS method. In

Section VII, conclusion and future work are given.

II. RELATED WORK

Nowadays, there are many excellent studies on dynamic
spectrum allocation in cognitive radio networks. In this sec-
tion, we classify and compare them from the perspective of
theoretical methods.

A. Spectrum Resource Allocation Based on Traditional Opti-
mization Theory and Game Theory

In order to solve the problem of dynamic allocation of
spectrum resources in wireless communications, the traditional
methods mainly include the methods based on mathematical
optimization [2], [3] and the methods based on game theory
[4]–[6]. For example, Martinovic et al. propose a cognitive
radio spectrum allocation method based on integer linear
programming in the work of [3], which solves the spectrum
allocation problem with interference by using many complex
assumptions and constraints. It is difficult or even impossible
to find an optimal solution in the real cognitive radio network
with the complex environment and dynamic network topology.
Although the methods based on mathematical optimization
have high solution accuracy, the generalization capability is
insufficient.

Besides, with the goal of maximizing spectrum utilization,
Yi et al. introduce a spectrum resource allocation method
based on auction in the work of [5]. Liu et al. design a
dynamic spectrum access method using game theory in the
work of [6]. However, these methods are not fit for IoV. The
high mobility of vehicles puts forward a strict requirement for
the convergence of Nash equilibrium in the game theory. It is
hard to reach this equilibrium point.

B. Spectrum Resource Allocation Based on Machine Learning

In recent years, with the development of statistical learning
methods, many studies use machine learning to realize the
dynamic spectrum allocation [12]. Among them, reinforce-
ment learning can guide a system agent to learn the unknown
environment by trial and error [19]. It can be applied to the
spectrum allocation decision.

First, the multi-arm gambling machine (MAB) is not only
an important random decision-making theory in the field of
operational research, but also belongs to a type of online
learning algorithm in reinforcement learning. The task of the
agent is to select one arm to pull in each round based on
the historical rewards it collected, and the goal is to collect
cumulative reward over multiple rounds as much as possible.
In essence, MAB is a way to optimize the reward by balancing
exploration and exploitation. Li et al. give a survey of spectrum
resource allocation by using MAB in the cognitive radio
network in the work of [13]. Zhang et al. formulate and study
a multi-user MAB problem that exploits the idea of temporal-
spatial spectrum reuse in the cognitive radio network [14].
However, the MAB modeling does not consider the cost of
pulling arms in the existing allocation schemes. When MAB
is utilized to solve the allocation problem in a centralized
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Fig. 1: System scenario of spectrum allocation in CR-IoV.

way, the scale of the arm increases exponentially with the
number of users to be assigned. Therefore, the convergence of
spectrum resource scheduling algorithm based on MAB cannot
be guaranteed.

In addition, model-free-based deep reinforcement learning is
also applied to the research of spectrum allocation. Naparstek
et al. propose a spectrum allocation scheme based on deep
learning framework under the wireless environment in the
work of [15]. However, model-free-based deep reinforcement
learning has problems of slow online learning speed and bad
self-adaption ability.

Recently, another kind of model-based reinforcement learn-
ing, Monte-Carlo tree search algorithm (MCTS), is applied
in the field of resource allocation [16], [17]. The MCTS-
based allocation algorithm builds a decision tree to explore
the possible solutions by expanding and pruning. Due to the
expansion of the tree, the search space becomes tremendous
gradually and the calculation scale is unacceptable. If this type
of method is applied in IoV directly, the dynamic environment
will further cause a large search tree. In addition, due to the
neglect of environmental uncertainties, the random strategy
adopted by Basic-MCTS in the simulation stage will produce
a high variance, which reduces the search efficiency [20].

III. SYSTEM SCENARIO AND PROBLEM FORMALIZATION

In this section, we introduce the system scenario of spec-
trum allocation in CR-IoV in Section III-A, and give the
mathematical formalization of our optimization problem in
Section ??.

A. System Scenario

Figure 1 shows the system scenario of spectrum allocation
in CR-IoV. PUs are the authorized mobile phone users in the
current network, and SUs are the vehicles equipped with CR
modules. When a PU occupies a channel, there is a protection
area around the PU (i.e., the red area in Figure 1). Any
radiation from SUs falling into the protection area would
interfere with the PU. Similarly, an interference radius is also
generated when the SU occupies a channel (i.e., the green area
in Figure 1).

IV. PRIORITY ASSIGNMENT BASED ON VEHICLE
TRAVELING STATE

In Section IV-A, we describe the problem of priority as-
signment. In Section IV-B, we give the detailed definition of
priority.

A. Problem Description

In CR-IoV, when the system carries out the spectrum
allocation, the current state of vehicle traveling should be
considered. For example, if a vehicle is about to leave the
communication range of the current base station, it should
be assigned to a low priority when the current base station
allocates resources.

The traveling state of a vehicle at the current moment mainly
includes direction, speed, acceleration and GPS coordinates.
Besides, the traveling state also should considers the degree
of geographical dispersion among vehicles and the communi-
cation capability of a vehicle.

The current state information of each vehicle is collected
by the current communicating base station. Then we carry
out priority evaluation for different cognitive vehicle users to
distinguish the priority weights for spectrum allocation.

For a SU n who initiates a service request, from the per-
spectives of the global state and local state, a comprehensive
priority evaluation score Priorityscoren is constructed by
defining a vehicle traveling evaluation score Travelingscoren
and a utility score Utilityn for the SU.

B. Priority Definition Based on Vehicle Traveling State

Definition 1: Vehicle Traveling Evaluation Score
According to the GPS coordinates, speed and accel-

eration, we define a vehicle traveling evaluation score
Travelingscoren for a cognitive vehicle n as

Travelingscoren =
1 + cos(θn)

4
·( vmax − vn
vmax − vmin

+
1

1 + ean
) (1)

where θn denotes the angle between the current driving
direction and the link ending at the vehicle’s position and the
base station’s position. Notation an denotes the acceleration
of the cognitive vehicle n. Notation vn denotes the speed of
the vehicle. Notations vmax and vmin represent the maximum
and minimum values of the diving speed. We assume that the
vehicle speed is within the value interval [vmin, vmax].

Obviously, a relatively large angle θn indicates that the
vehicle will travel out of the coverage range of the base station
in the future. Therefore, a cognitive vehicle with large θn
should be given a relatively low spectrum allocation priority.
We use formula 1+cos(θn)

2 to normalize the different priorities
of the angle θn to the value interval [0, 1]. In addition, a
vehicle with high driving speed will quickly travel out of the
coverage range of the base station in the future. Therefore, it
should be given a relatively low spectrum allocation priority.
The normalized formula vmax−vn

vmax−vmin
is used to describe the

influence of vehicle driving speed on the priority. Similarly, a
vehicle with high acceleration should be given a relatively low
spectrum allocation priority. To normalize the value interval
to [0, 1], formula 1

1+ean is used to describe the influence
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of vehicle driving acceleration on the priority. Finally, to
constrain the value of Travelingscoren within the value
interval [0, 1], we multiply it by 1

2 to the right of Eq. (1).
Definition 2: Network Utility Score
We define a network utility score for a cognitive vehicle

user to evaluate its communication capability. For a cognitive
vehicle n, its network utility score is defined as follows:

Utilityn = log2(1+SNRn)·

∑
1≤n,n′≤N,n′ ̸=n

Dispersionn,n′

N − 1
(2)

where SNRn denotes the signal-to-noise ratio of the user
n to receive the signal from the base station. Formula∑
1≤n,n′≤N,n′ ̸=n

Dispersionn,n′ represents the global disper-

sion of user n within the coverage area of the base station.
For the numerator of Eq. (2), we give the following detailed

definition. The Dispersionn,n′ between two SUs n and n′ is
defined as follows:

Dispersionn,n′ =

{
1 Dn,n′ > εn

0 others
(3)

where εn is a dispersion threshold; Notation Dn,n′ represents
the average dispersion time between two SUs n and n′. First,
the threshold εn is obtained by taking the median value of
{Dn,n′ |1 ≤ n′ ≤ N,n′ ̸= n}. Second, the average dispersion
time Dn,n′ is defined as

Dn,n′ =

∫ T

0
βn,n′(t)dt

τn,n′
(4)

In Eq. (4), the communication dispersion state between two
vehicles n and n′ is defined as βn,n′(t). When there exists
communication interference between vehicle n and n′, we let
βn,n′(t) = 0. It means that the two are in an ‘encounter’ state.
On the contrary, when βn,n′(t) = 1, it means that the two are
in a ‘scattered’ state. Thus, in a time window T , the numerator
of Eq. (4) represents the total dispersion time between user n
and user n′. Besides, τn,n′ in the denominator denotes the total
number of times that user n and user n′ are in the ‘scattered’
state in time window T . Obviously, the higher the value of
Dn,n′ , the longer the time that the two users n and n′ are
in the ‘scattered’ state. Thus, we conclude that the higher the
global dispersion

∑
1≤n,n′≤N,n′ ̸=n

Dispersionn,n′ , the greater

the probability that a user has the chance to reuse the channel,
which further leads to a high network utility.

To sum up, a vehicle with a large network utility score in Eq.
(2) means that its global communication capability is strong,
so the vehicle should be given a high spectrum allocation
priority.

Definition 3: Comprehensive Priority Evaluation Score
According to the vehicle traveling evaluation score

TravelingScoren and network utility score Utilityn,
we construct a comprehensive priority evaluation score
PriorityScoren for the secondary vehicle user n below,

Priorityscoren = Travelingscoren · Utilityn (5)

For a secondary vehicle user who requests to access the base
station, the base station calculates the priority score of this SU

by collecting the vehicle’s information. We rank all the scores
from the largest to the smallest. Therefore, we can obtain a
priority order list Priorityscore list for all the SUs in the
current allocation task, which will be used in the following
Section V.

V. FINDER-MCTS ALGORITHM FOR COGNITIVE IOV
SPECTRUM ALLOCATION

In the introduction, we mentioned that our paper will use
MCTS to solve the problem of efficient spectrum allocation for
CR-IoV. MCTS is a classic reinforcement learning algorithm
based on tree search. To distinguish it from the method pro-
posed in our paper, we call the classic MCTS as Basic-MCTS.
The Basic-MCTS offers a concise computation framework
by recursively using a tree policy to expand the search tree
towards high-reward nodes, and a default policy to perform
the simulations for updating the estimated rewards and other
statistics [21]. However, due to the continuous expansion of
search actions, the search scale of Basic-MCTS is often very
large, which greatly affects its search speed. In addition, due to
the neglect of environmental uncertainties, the random strategy
adopted by Basic-MCTS in the simulation stage will produce a
high variance, which reduces the search effect of Basic-MCTS.

To improve the search speed and obtain an optimal solution,
we propose an algorithm named Finder-MCTS in this section.
First, we reduce the search scale of the tree horizontally
by using the comprehensive priority evaluation score defined
in Definition 3 above. Meanwhile, the constraints defined in
Section ?? are also considered to reduce the search scale of the
tree vertically. Second, the uncertainty of the SUs’ spectrum
occupation activities are included into the simulation strategy.
We give the bias estimation of reward in different scenarios in
the simulation stage so as to approximate the real environment
and accelerate the convergence of tree search.

Thus, in Finder-MCTS, the first step is to use Markov
decision process (MDP) to construct Monte-Carlo tree compu-
tation framework (Section V-A). Then, with respect to the state
prediction, we give a DNN-based environment state predictor–
ESP (Section V-B). Finally, we describe the detailed steps of
Finder-MCTS algorithm (Section V-C).

A. Finder-MCTS’s Computation Framework

The problems solved by the MCTS are commonly formal-
ized by the Markov decision process (MDP), in which we
take the base station as the spectrum scheduling agent and
use the link capacity formulated in Eq. (??) as the value of
the reward Q when a SU occupies a channel. Let S and A
denote the MDP state space and action space, respectively.
F : S × A → S denotes the MDP transition function from a
state-action pair to the next state. The state transition function
fESP is given by a deep neural network (DNN) simulator
in Section V-B. The definitions of the MDP state space and
action space are described as follows,

S = {sv|sv = (λv, φv)} (6)

A = {am|1 ≤ m ≤ M} (7)
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Fig. 2: An example of search steps in Finder-MCTS.

In Eq. (6), the MDP state is composed of two parts: λv

denotes a vector of bandwidth resource usage of M channels
in the base station, and φv denotes the number of service
requests to be allocated in the current system. In addition, in
Eq. (7), the action space is a set composed of whether the
number of M channels are allocated, in which the action am
denotes that the agent allocates the channel m to a vehicle
that enters into the priority-based allocation sequence and is
ready to be scheduled by the base station currently.

A Monte-Carlo search tree consists of nodes and edges. A
node v is a tree node that corresponds to the MDP state sv,
and the edge connecting a parent node and a child node in
the tree represents an action that causes the state transition.
Each node v in the tree holds a node state, which contains
three types of statistics: visit count (Nv), MDP state (sv), and
cumulative reward (Qv) received by node v.

The specific search steps are shown in Figure 2.
1) Create a root node of the search tree and initialize the

node state. Assume that the root node is denoted by v and the
node state is {Nv, sv, Qv}.

2) Allocate the spectrum resources for vehicles according to
the priority order list Priorityscore list defined in Definition
3, and extend the child node while update the node state. Each
layer’s tree expansion represents the spectrum allocation for a
vehicle and each allocation process involves many iterations.
Take the root node v in Figure 2 as an example. When the
channel assignment action of vehicle ID3 is a1, the search tree
extends down to the child node v′ and update the node state
through iterative calculation (i.e., sv′ = fESP (sv, a1)).

3) When the tree expansion reaches to the termination
condition of iteration (i.e., the second users or the available
spectrum resources are all allocated), an optimal channel allo-
cation matrix A∗ in the current allocation period is returned.
For example, assume that when reaching to the node v′′′ in
Figure 2, the iteration ends. The black arrow lines direct an
allocation path v → v′ → v′′ → v′′′. Then the corresponding
actions constitute a feasible allocation policy set {a1, a5, a1},
which can be converted to a channel allocation matrix AN×M

as an output.

B. DNN-based Environmental State Predictor—ESP

Due to the uncertainty of the PUs’ spectrum occupancy
activities, when the tree is expanded from one node to the next
in Section V-A, the expansion will be not stable, i.e., given a
state and an action, the next state is uncertain. This uncertainty

is caused by the unknown environment of IoV. Therefore,
to limit the expansion scale of the MCTS tree horizontally
and speed up the search, it is necessary to gradually learn to
approach to the real environment of IoV when doing spectrum
allocation. This section presents an offline environment state
predictor (named ESP) based on a deep neural network (DNN).

Note that, to obtain the ESP, enough training data are
needed. Thus, first during the cold start phase of Finder-MCTS
(i.e., the algorithm just starts running), we do not rely on ESP.
This does not affect the channel allocation solution of Finder-
MCTS. After a period of time in the cold start phase, our
base station can obtain and cumulate large numbers of ‘state-
action transition pairs’. Subsequently, we input these ‘state-
action transition pairs’ into ESP continuously as the training
data to obtain a state transition function fESP , which is an
offline training process. Once we have the fESP , the Finder-
MCTS could converge fast due to the reduction in branching.
The above training is done by DNN.

The network structure of DNN consists of one input layer
and three hidden layers. In this paper, we set the learning rate
of DNN to 0.05 and the activation function of DNN is the
rectified linear unit function (ReLU). To optimize the neural
network parameters, we use the mini-batch gradient descent
method [22]. In the DNN, the training label is the state sv′ ,
which is the state of the corresponding expansion child node
v′ of node v. ESP is used to obtain the prediction state ŝv′ .
The loss function of ESP is,

lossESP =
1

B

∑
B

(∥sv′ − ŝv′∥2) (8)

where B represents the batch size of mini-batch gradient
descent. In the experiment we set B = 64, with indicating
that 64 samples are selected in each iteration. Notation ∥.∥2
represents the L2 norm. When lossESP converges, we let the
DNN network parameter wESP update.

After we obtain the ESP function, based on the selected
action am and MDP state sv, ESP can give the MDP state of
its expanded node ŝv′ ,

ŝv′ = fESP (sv, am|wESP ) (9)

C. Finder-MCTS Algorithm Based on Action Space Pruning
and Scenario Simulation

Finder-MCTS requires to execute the following four steps:
selection, expansion, simulation, and backpropagation itera-
tively to complete an computation process, which are shown
in Figure 3. In Figure 3, the black circles indicate the nodes
involved in each step and the red arrow lines indicate the
actions corresponding to each step. In subfigure (c), policy
usually refers to the random selection action extended at
each step of the simulation process. We usually call step (a)
selection and step (b) expansion as the tree policy; step (c)
simulation and step (d) backpropagation as the default policy.
Specifically, the detailed procedures and descriptions are give
in Figure 4 and in the following steps (a)-(d).

(a) Selection. Each iteration starts from the root node.
When the algorithm has to choose to which child node it will
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Fig. 3: An iterative computation process of Finder-MCTS.
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Fig. 4: The flow chart of Finder-MCTS.

descend, it tries to find a good balance between exploitation
and exploration. We use the upper confidence bound for tree
(UCT) [23] to recursively select child nodes. The selection
criterion of the optimal child node is:

argmax
v′∈child(v)

(
Qv′

Nv′
+ c ·

√
ln(Nv)

Nv′
) (10)

where c ≥ 0 is a weight coefficient used to adjust the
exploitation and exploration. We set c = 0.8 in the experiment
through many tests. Notation child(v) represents the set of
child nodes with v as the parent in the tree. Nv′ and Nv

represent the total number of times that the child node v′ and
its parent node v have been visited iteratively. Qv′ represents
the cumulative reward obtained by node v′. Note that, the
selected child node should be expandable (i.e., have unvisited
child node) and represent a non-terminal state. Next, the
algorithm treats the child node with the largest value of UCT
as the current node for the next expansion.

(b) Constraint Oriented Expansion. Finder-MCTS judges
whether the number of visits of the current node is 0. If visit
count N = 0, the algorithm goes to step (c) directly. If the visit
count N ̸= 0, the algorithm enumerates the available actions.
However, if it is just a simple enumeration, the number of
available actions in the next layer is M . As the tree expands,
a huge search tree will be built. The computational complexity
grows geometrically with the number of SUs to be allocated.
Thus, here we give the constraint oriented expansion.

In the constraint oriented expansion, we prune the action
space according to the constraint conditions defined in Section
??-2) so as to obtain all available actions from the current
node. And then add new nodes to expand the tree and let the
current node be a new child node which is randomly selected
after expansion.

Specifically, we use A(n, v) represent the set of available
actions starting from the node v, which is used for the next
round of channel allocation for the n-th SU. That is to
say A(n, v) is an interference-free action space of a SU.
The detailed implementation steps of the constraint oriented
expansion are described in Algorithm 1.

In Algorithm 1, we use three main steps to perform ac-
tion pruning. First, considering the channel availability, we
introduce the channel availability matrix L to prune the
set of actions. We map the elements of ln,m = 1 in the
channel availability matrix for vehicle n to the available
action set (Lines 2-6 in Algorithm 1). Second, considering
that the vehicle IDn currently to be allocated should not
share the same channel with a vehicle having communication
interference, we introduce the SU-SU interference matrix C
for the tree pruning. The algorithm traverses the elements in
the channel allocation matrix A and makes a judgement on
whether an′,m = 1 and cn,n′,m = 1 hold at the same time.
If they hold at the same time, am is removed from the action
set (Lines 7-15 in Algorithm 1). Next, in each iteration, the
algorithm needs to make a judgement on whether constraint (1)
and constraints (5-a) ∼ (5-g) hold. If the available channel m
for the vehicle currently to be allocated does not satisfy these
constraints, action am needs to be removed from the set of
actions (Lines 16-20 in Algorithm 1). Finally, If A(n, v) = ∅,
the algorithm will skip the current allocation and wait for the
next round of allocation (Lines 21-23 in Algorithm 1).

(c) Simulation Based on Different Scenarios. From the
above step (b), we know that if the visit count of the current
node is zero, we will perform a simulation from the current
node (i.e., the newly expanded node, denoted by ṽ)1 to the
terminal node (denoted by ṽ∆). Here, the terminal node refers
to the node that the descending arrives at when the SUs or the
available channel resources have been all allocated. Usually,
the simulation uses a random search strategy to generate a
reward Qṽ∆

at the final leaf node ṽ∆. However, the time-
varying property of PUs’ spectrum occupancy activities makes
the actual available spectrum resources uncertain. This uncer-
tainty will have potential impacts on the reward evaluation for
the SU to be allocated in IoV.

Therefore, in this paper, the duration of network service for
a PU (denoted by τ ) is included in the simulation when doing
reward evaluation. Reference [24] pointed out that the duration
of network service for PU in each channel obeys a log-normal
distribution. The probability density function (PDF) is:

f(τ ;µ, σ) =
1

τσ
√
2π

e
−(ln τ−µ)2

2σ2 (τ > 0) (11)

The parameters (µ, σ) are in milliseconds (ms) and the values
used in this paper are (2.47, 1.88) [24].

1We use symbol ∼ to label the nodes in the stage of simulation.
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Algorithm 1 Constraint Oriented Expansion for Vehicle IDn

Input:
L - channel availability matrix
C - SU-SU interference constraint matrix
A - channel allocation matrix
γm - the maximum allowable interference level of channel m
ϕm - the available bandwidth of channel m
δm,k - the maximum allowable interference power of PU k on channel
m

Output:
A(n, v) - the action space/set of vehicle IDn under the current node v
Function Action(n, v)

1: A(n, v)← ∅
2: for each ln,m in the n-th row of matrix L do
3: if ln,m = 1 then
4: A(n, v)← am
5: end if
6: end for
7: for each cn,n′,m in 1 ∼ n columns of the n-th row of matrix C do
8: for each an′,m in A do
9: if cn,n′,m = 1 and an′,m = 1 then

10: if am ∈ A(n, v) then
11: remove am from A(n, v)
12: end if
13: end if
14: end for
15: end for
16: for each am in A(n, v) do
17: if the available channel m for the vehicle IDn does not satisfy the

constraint (1) and constraints (5-a) ∼ (5-g) then
18: remove am from A(n, v)
19: end if
20: end for
21: if A(n, v) = ∅ then
22: the algorithm does not perform the allocation for vehicle IDn

and waits for the allocation of the next user according to the
Priorityscore list

23: end if

Through random sampling from the above distribution, we
can obtain different scenarios of the service durations for the
PUs at each layer in the simulation stage. Each sampling
corresponds to a scenario. Since there are infinite scenarios
when sampling, here we sample number of χ times at each
layer of simulation to control the computation scale. Thus, a
scenario set is formed, denoted by π̂ = π1, π2, ..., πi, ..., πχ,.
In the experiment, we set χ = 9. Next, we define a stochastic
bonus to adjust the reward evaluation according to different
service durations, the resource supply and demand situation,
and the utilities of SUs.

Definition 4: Stochastic Bonus
Assume that the channel m matches the vehicle IDn and

the tree expands from node ṽ to node ṽ′ in the simula-
tion stage. Then, we define a stochastic bonus for node ṽ
as E

i∈π̂
(H ṽ

n,m(i)), in which E represents the expectation of

stochastic bonus obtained by vehicle IDn in χ scenarios. We
have

H ṽ
n,m(i)) = tanh(Utilityn) ·τ−1

i ·
(

gm
Count(Lm)− Count(Am)

)
(12)

where τi (1 ≤ i ≤ χ) denotes one of the samplings based
on distribution f(τ ;µ, σ). The larger the value of τi, the
longer the channel occupied by the PUs in this sampling.
It indicates the bonus of vehicle IDn when doing allocation
will be low. Notation Utilityn > 0 represents the network
utility score of vehicle IDn (Definition 2), which reflects

the communication capability of vehicle IDn and is used
as a weight coefficient here. We utilize the hyperbolic tan-
gent function tanh(·) to normalize the value of Utilityn to
the interval [0, 1]. When the Utilityn is large, the weight
coefficient is closer to 1, which indicates that the vehicle
IDn with strong communication ability tends to have high
bonus. Besides, gm

Count(Lm)−Count(Am) measures the remain-
ing minimum average bandwidth available to vehicle IDn

currently. gm denotes the remaining channel bandwidth of
the m-th channel which is based on the available bandwidth
threshold ϕm. Count(Lm) records the number of elements
in the m-th column with value of 1 in matrix L. Thus
Count(Lm)−Count(Am) describes the maximum number of
allowable access vehicles on channel m without considering
the interference matrix C and the available bandwidth ϕm.

In summary, if a vehicle with strong communication capa-
bility, the PUs with low service durations, and the remaining
resources are enough, the stochastic bonus will be high.

Based on the above Eq. (12), we have an adjusted reward
Qṽ for node ṽ in the simulation stage,

Qṽ = r(n,m) + E
i∈π̂

(H ṽ
n,m(i)) (13)

where rn,m refers to the immediate reward that channel m is
allocated to vehicle IDn (defined in Eq.(??)). For simplicity,
we use notation Qṽ with omitting the label of n and m.

When the simulation reaches to the terminal node ṽ∆, we
can get the simulation cumulative reward Qṽ∆ of all nodes on
the simulation path from ṽ to ṽ∆. We have

Qṽ∆
=

ṽ∆∑
ṽ

{rn,m + E
i∈π̂

(H ṽ
n,m(i))} (14)

(d) Backpropagation. The aim of backpropagation is to
update the empirical information of the prior exploration
before the next iteration, , which is shown in Figure 5. When
an iteration reaches to the terminal node ṽ∆, according to
Eq. (14), we get the simulation cumulative reward Qṽ∆

for
backpropagation.

VI. EXPERIMENTAL RESULTS AND ANALYSIS

In this section, first we give the detailed simulation set-
tings, including the vehicular dataset generation and some
parameters in our proposed method. Second, we compare
Finder-MCTS with other types of methods in terms of channel
utilization ratio (CUR), average link capacity (ALC), and
convergence time. Finally, we test the performance of Finder-
MCTS compared with other MCTS algorithms’ variations.

A. Simulation Settings

Our experiments are done by using the simulation of urban
mobility (SUMO) simulator. All the simulations are conducted
in a PC with Intel Core CPU i9-9820X 3.50GHz processor,
64GB RAM. We export a map of area near Pudong Airport
in Shanghai from OpenSteetMap, which is shown in Figure 6.
The latitude of the experimental area is between [31.19177,
31.19742]. The longitude is between [121.31134, 121.31853].
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Fig. 5: Backpropagation of Finder-MCTS.

Fig. 6: The experimental area imported from OpenStreetMap.

In this area, we randomly select four base stations (depicted
by red star marks). The locations of these base stations
and different communication radius are listed in TABLE I.
Each base station can observe the traffic flows and obtain
the passing vehicles’ information, including the vehicle ID,
location, speed, timestamp and acceleration.

Assume that each base station has M = 5 available
spectrum channels. The bandwidth of each channel is set to
10MHz. We import 200 cognitive vehicles into the simulation
scene. Each vehicle randomly proposes a service request to the
base station with probability of 50% at each allocation time
window. Suppose that the duration of network service for each
vehicle is equal to the allocation time window. In SUMO,
we set the parameters for the different types of vehicles in
TABLE II. Compared with the moving vehicle, a PU can be
regarded as a static point in the experiment. We set a total of
K = 50 fixed points as PUs under the four base stations. Each
PU randomly occupies a part of the communication bandwidth
(MHz), which subjects to U [1, 3] uniform distribution. At each
allocation time window, we randomly let 70% PUs occupy the
nearest base station’s available channels. The the duration of
network service for a PU is chosen according to Eq.(11).

Algorithm 2 Finder-MCTS
Input:

Priorityscore list
Output:

optimal channel allocation matrix A∗

Function F inder −MCTS(v, Priorityscore list)
1: load network fESP

2: create root node v with state sv
3: create channel allocation buffer ΛL,C

4: while node v is a terminal node do
5: initialize a matrix AN×M with all elements equaling to 0
6: ṽ ←− Treepolicy(v)
7: Qṽ∆ ←− Simulation(sṽ , ṽ)
8: if am = 1 for vehicle IDn then
9: an,m=1

10: else
11: an,m=0
12: end if
13: update and put AN×M in ΛL,C

14: Backpropagation(v,Qṽ∆ )
15: end while
16: return A∗ = argmax

AN×M∈ΛL,C

{U(AN×M , R)}

Function Treepolicy(v)
17: while v is nonterminal do
18: if v is not a leaf node then
19: v′ ← Bestchild(v)
20: Treepolicy(v′)
21: else
22: if Nv = 0 then
23: ṽ ← v
24: else
25: Expand(v)
26: end if
27: end if
28: end while

Function Bestchild(v)

29: return argmax
v′∈child(v)

(
Qv′
Nv′

+ c ·
√

ln(Nv)

Nv′
)

Function Expand(v)
30: execute Action(n, v)
31: choose am ∈ A(n, v) randomly
32: generate a new child v′ of node v
33: initialize Qv′ = 0
34: sv′ = fESP (sv , am)
35: Treepolicy(v′)

Function Simulation(ṽ)
36: initialize i = 0,Qṽ=0
37: while ṽ is not a terminal node ṽ∆ do
38: choose am ∈ A(n, ṽ) randomly
39: sṽ′ ← f(sṽ , am),ṽ′ ← ṽ
40: calculate rn,m according to Eq. (??)
41: Qṽ′ ← Qṽ + rn,m + Bonus (Bonus is calculated based on Eq.

(12)-(14))
42: i← i+ 1
43: end while
44: return Qṽ∆ when node ṽ reaching to the terminal node ṽ∆

Function Backpropagation(v,Qṽ∆ )
45: while node v is not null do
46: Nv ← Nv + 1, Qv ← Qv +Qṽ∆
47: v ← parent of v
48: end while

B. Comparison with Other Types of Methods

First, after the simulations are all done in the four base
stations, we compare the average CUR, ALC, and convergence
time of the proposed Finder-MCTS with three other methods,
shown in Figure 7. From the average CUR performance in
Figure 7 (a), we can see that Finder-MCTS performs the best,
the second-best is game theory-based method, and the worst
is PSO-based method. From the average ALC performance
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TABLE I: Information of the four base stations.

Name Latitude Longitude Communication Radius
BS1 31.19554 121.31274 500m
BS2 31.19604 121.31619 500m
BS3 31.19327 121.31462 500m
BS4 31.19363 121.31713 500m

TABLE II: Parameters used in SUMO.

Parameters Car Bus Truck
the maximum speed 15(m/s) 13(m/s) 10(m/s)
the minimum speed 1(m/s) 1(m/s) 1(m/s)
the minimum gap
between vehicles 2.5(m) 2.5(m) 2.5(m)

the maximum acceleration 3(m/s2) 1.5(m/s2) 1.5(m/s2)
the maximum deceleration 7.5(m/s2) 4(m/s2) 4(m/s2)
the maximum deceleration

for emergency breaking 9(m/s) 7(m/s) 7(m/s)

in Figure 7 (b), we can see that Finder-MCTS performs the
best, the second-best best is DQN-based method, and the worst
is game theory-based method. From the average convergence
time performance in Figure 7 (c), we can see that Finder-
MCTS performs the best, the second-best best is DQN-based
method, and the worst is game theory-based method.

Based on the above results, we give the following analysis.
Because the convergence of the Nash equilibrium solution is
negatively related to the size of the problem, the game theory-
based method’s convergence performance is poor. When the
game theory-based method reaches convergence, the CUR
performance of the system can be approximately optimal,
however the equilibrium of the multi-user game makes the
ALC value relatively low. Besides, the PSO-based method is
easy to fall into the local optimal solution, its average CUR and
average ALC perform relatively poor. Since the complicated
parameters’ setting of PSO, its average convergence time
becomes longer as the scale of the problem becomes larger.
Moreover, after the exploration of actions through reinforce-
ment learning, DQN-based method can obtain a higher quality
spectrum allocation solution, and the performance of average
CUR and ALC is second only to Finder-MCTS. However,
the convergence time of DQN-based method is higher than
Finder-MCTS due to the long-term exploration and value
updating, although enough experience information learned
through online learning can speed up the convergence time
of DQN to some extent. By contrast, Finder-MCTS based on
offline training and online learning has an average 36.47%
improvement in convergence time than other methods. In terms
of ALC, Finder-MCTS has an average advantage of 18.24%
over other methods. At the same time, the channel utilization

TABLE III: The parameters use in BILP.

Parameter Notion Value
the maximum allowable

interference level on channel m γm -114dBm

the level of background
noise on channel m Nm 1dB

[minimum transmission power,
maximum transmission power] [Pmin

m,n ,Pmax
m,n ] [20,25] dBm

the maximum allowable interference
power of PU k on channel m δm,k 5dB
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(c) Performance of Convergence Time

Fig. 7: Comparison with three other methods in terms of
average CUR, ALC and convergence time.

of Finder-MCTS is 9.40% higher than other methods on
average.

Second, since the number of SUs in the coverage area of
each base station is time-varying, it is necessary to observe the
performance changes under different SUs’ scales. The results
are shown in Figure 8. Here, notice that in Figure 8, each
depicted point in the curve is an averaged value statistically.
For example, as to the results that distribute in the scale
interval (p1, p2] of x-axis, we average these results and depict
the averaged value corresponding to point p2.

Figure 8 (a) shows the relationship between the number of
SUs and CUR. In general, as the number of SUs increases, the
CUR curve increases until it gradually converges. In addition,
we find that when the number of SUs is small, the game
theory can give a solution with high CUR. However, with the
increase of SUs, Finder-MCTS and DQN-based method show
obvious advantages in resource utilization. The reason behind
that is when the scale of SU becomes large, the combination
of historical experiences and online exploration can greatly
improve the quality of the solution. In contrast, the game
theory-based equilibrium quality for large-scale SU problem
has declined. Also, the PSO-based method often converges to
a local optimal solution and its CUR performance cannot be
guaranteed.

Figure 8 (b) depicts the relationship between the number
of SUs and ALC. It is obvious that as the number of SUs
increases, the ALC value decreases since the available spec-
trum resources of the base station side are limited. Besides,
we find that when the number of SUs is small, the game-
based method shows a good performance in ALC. However, as
the number of SUs increases, Finder-MCTS shows an obvious
advantage. This because when the scale of SUs becomes large,
finding an optimal solution is hard for the game-based method.
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Fig. 8: Performance comparison with varying the number of SUs.

Moreover, since the PSO-based method is hard to reach the
global convergence, the ALC performance is relatively low
with the number of SUs increasing.

Figure 8 (c) shows the simulation results of the relationship
between the number of SUs and the convergence time. First,
we can see that the convergence time of game theory-based
and PSO-based method shows an obvious growth trend as the
number of SUs increases, while the convergence time based
on DQN and Finder-MCTS rises moderately. The main reason
is that the Finder-MCTS and DQN-based methods gradually
fit the channel state model after continuous learning, thereby
greatly improving the search efficiency. The convergence
time of Finder-MCTS is reduced by 65.23% and 18.85%
compared with the game theory-based method and the PSO-
based method. In the long run, Finder-MCTS shows a short
and gentle convergence time performance in the dynamic
environment.

All above phenomena verify the advantage of Finder-MCTS
in solving spectrum allocation in IoV. Finder-MCTS can
effectively complete the rapid learning of the approximate
optimal allocation solution in a time-varying environment,
which greatly improves the available spectrum utilization ratio
of the current base station system.

C. Comparison with Other MCTS Algorithms’ Variations

In this part, we compare Finder-MCTS with other MCTS
algorithms’ variations. We show why we consider the priority
mechanism and simulation under different scenarios.

We set two basic types of MCTS-based spectrum alloca-
tion modes: random-order-based allocation mode and priority-
based allocation mode, which are called as R-MCTS and
P-MCTS respectively. In R-MCTS, compared with Finder-
MCTS, both priority and the uncertainty of PUs’ service dura-
tions are not taken into consideration. In P-MCTS, compared
with Finder-MCTS, only the uncertainty of PUs’ service dura-
tions is not taken into consideration. The simulation results are
shown in Figure 9. We can see that Finder-MCTS performs the
best, the second-best is P-MCTS, and the worst is R-MCTS.
According to the above results, we give the following analysis.

From Figure 9 (a), we can see that the CUR performance
of P-MCTS is superior than R-MCTS. This gap illustrates that
the introduction of priority evaluation will improve the ratio of
the spectrum utilization (about 5.90% increase). Meanwhile,
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P-MCTS

Finder-MCTS

(a) Performance of CUR

0 0.5 1 1.5 2 2.5
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(b) Performance of ALC
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(c) Performance of Convergence Time

Fig. 9: Comparison with two types of MCTS algorithms’
variations in terms of average CUR, ALC and convergence
time.

Finder-MCTS has the best CUR performance. In the long run,
the service duration τ of PU on each channel will give each
allocated SU differentiated stochastic bonus. Hence, based on
the uncertainty of the channel state occupied by the PUs, we
introduce the factor τ that affects the supply-demand ratio
of spectrum resources into the reward evaluation during each
expansion step of the simulation process. We learn about
Finder-MCTS is better (about 4.08% increase) than P-MCTS
on ALC. Hence, we can conclude that the optimization of the
stochastic simulation process contribute to improve spectrum
usage efficiency of CR-IoV from a global perspective.

Figure 9 (b) depicts the different performances of the
three methods in ALC performance. With the help of pri-
ority evaluation, P-MCTS has increased by 6.73% compared
with R-MCTS. The ALC performance of Finder-MCTS has
increased by 10.19% compared with P-MCTS by evaluating
the uncertainty of PUs’ service durations.
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Figure 9 (c) shows the average convergence time of three
methods. Owing to the priority evaluation, P-MCTS has
a 22.89% advantage than R-MCTS. This characterizes the
positive impact of the differentiation priority evaluation on
the algorithm convergence time. Secondly, under the same
setting, with the help of reduction of action space in each
descending layer, Finder-MCTS achieves a faster convergence
speed (about 46.69% increase and 30.86% increase) than R-
MCTS and P-MCTS.

VII. CONCLUSION

In this paper, we investigate the spectrum allocation in
CR-IoV by modeling a optimization problem to maximize
the link capacity of vehicle users while guaranteeing no
interference between users. What’s more, we propose Finder-
MCTS to solve the optimization problem. We show that
Finder-MCTS can learn to adapt and update allocation strategy
for transmission with dynamic network settings. At last, the
simulation results prove that Finder-MCTS is more efficient in
convergence speed, and it achieves considerable performance
gain in spectrum utilization and link capacity comparing to
other popular strategies especially when the number of vehicle
users gets larger. Besides, we have also confirmed the effec-
tiveness of priority evaluation of vehicle users, solution space
optimization and uncertainty evaluation of the PUs’ service
duration by comparing with the performance of classic MCTS.
In the future work, we will further study the cooperative
problem of multiple base stations while guaranteeing spectrum
allocation efficiency and consider migrating our proposed
method from the virtual to the real life.
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