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User Association for Load Balancing in Vehicular
Networks: An Online Reinforcement

Learning Approach
Zhong Li, Cheng Wang, and Chang-Jun Jiang

Abstract— Recently, a number of technologies have been
developed to promote vehicular networks. When vehicles are
associated with the heterogeneous base stations (e.g., macrocells,
picocells, and femtocells), one of the most important problems is
to make load balancing among these base stations. Different from
common mobile networks, data traffic in vehicular networks can
be observed having regularities in the spatial–temporal dimension
due to the periodicity of urban traffic flow. By taking advantage
of this feature, we propose an online reinforcement learning
approach, called ORLA. It is a distributed user association
algorithm for network load balancing in vehicular networks.
Based on the historical association experiences, ORLA can obtain
a good association solution through learning from the dynamic
vehicular environment continually. In the long run, the real-time
feedback and the regular traffic association patterns both help
ORLA cope with the dynamics of network well. In experiments,
we use QiangSheng taxi movement to evaluate the performance
of ORLA. Our experiments verify that ORLA has higher quality
load balancing compared with other popular association methods.

Index Terms— User association, online reinforcement learning,
load balancing, vehicular networks.

I. INTRODUCTION

AS THE development of vehicular networks, more and
more vehicles need to associate with the heterogeneous

base stations (different ties of transmit powers, physical sizes
and costs) in vehicular networks [1]. In a city, there are great
differences among these requirements. In the dense traffic
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Fig. 1. Illustration of vehicular association with heterogeneous base stations
under max-SINR scheme.

area, the association requirements are more than that in the
sparse traffic area. Under the traditional max-SINR scheme,
a powerful/strong base station may attract more vehicles to
associate with it, as illustrated in Fig.1. Even with a targeted
deployment where the weak base stations are placed in the
dense traffic areas, most vehicles still receive the powerful
downlink signal from the strong base stations. This will result
in the strong ones having heavy loads while the weak ones
having many idle resources. For vehicles, even they associate
with the strong base stations, the service rates are still very
bad, since the strong ones serve too many vehicles. So, a more
balanced association scheme is needed for vehicular networks.

Unfortunately, most popular optimization technologies, like
gradient descent method, Lagrange multiplier method, only
apply to the scenario where the traffic flow generated by
mobile users is approximately static. They assume the channel
quality is stable. However, in real world, the change of the
traffic is not stable. The assumption results in the invalidation
of association solution. Even if we apply them in the unknown
dynamic environment, the lack of feedback signals from
environment causes the gradient descent losing its direction.
Besides, once the network scenario changes, the traditional
association algorithms must rerun in the whole network with
high costs. Fortunately, we find that in vehicular networks,
there exists potential regularities of spatial-temporal distribu-
tion for traffic flows every day. The goal of our study is to
learn and utilize the spatial-temporal association experiences
so as to directly obtain the association solution in the dynamic
vehicular environment.

To this end, we introduce the reinforcement learning method
into this work. Reinforcement learning is learning what to
do or how to map situations to actions so as to maximize a
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numerical reward signal [2]. Different from the supervised and
unsupervised learning, trial-error search and delayed reward
are the two most important features of reinforcement learning.
Through interacting with the unknown environment continu-
ously, an agent should know in what states what actions should
be taken so as to make a right decision. In our problem,
we face an unknown and dynamic vehicular environment.
Because there are no labels that can be obtained in advance,
our problem can not be formalized to an artificial neural
network which is usually used to solve the classification and
regression problems. The trial-error search and delayed labels
are the features of our problem. Thus, we develop ORLA,
an online reinforcement learning approach for user association
in vehicular networks. The main idea is that through feeding
back from the dynamic vehicular environment iteratively,
ORLA obtains a near-optimal association solution based on
historical association experiences. In the future, enlightened by
literature [3], we can further consider the deep reinforcement
learning to investigate our problem.

In the paper, there are two challenging problems when
designing ORLA.

• How to use the reinforcement learning model to define an
association problem in the dynamic environment?

• How to utilize the spatial-temporal regularities to design
ORLA in vehicular networks?

For the first challenge, we transform the association problem
into an ‘N-armed bandit problem’ [2]. We take advantage of a
price-based idea to propose an initial reinforcement learning
method. In the method, through feeding back from the current
environment, we design a reward function that directs the
change of price. The reward is defined as a deviation of
all users’ average service rates, which reflects the network
load balance to some extent. Through learning, we can obtain
the best association decision from the maximum long-term
cumulative reward.

For the second challenge, we design a historical-based
reinforcement learning method. After the initial reinforcement
learning, each base station obtains its own historical associa-
tion patterns, i.e., which users are associated with it. Since
the traffic flow has the spatial-temporal regularities, there
may exist similarity between the historical associations and
the current case. Thus the historical association patterns can
be utilized as references for the forthcoming traffic flows.
The detailed definition about association pattern1 is given in
Section V-B. When the network keeps up changing, the base
station uses a ε greedy method to learn the association
actions based on its historical association patterns (decisions).
In the historical-based reinforcement learning, ORLA uses the
Pearson distance and Kullback-Leibler distance to calculate the
similarity between the current case and the historical recorded
pattern. The similarity helps the base station to choose the
appropriate action and accelerate learning. After that, based on
the difference of association allocations between the current
requirement and the historical decision, ORLA proposes a
binary approaching method and a multi-spot diffusion method

1In the following, we often use the term ‘pattern’ and the term ‘association
pattern’ alternatively, without confusion.

to obtain the association decision for the current network.
Finally, when the historical-based reinforcement learning ends,
each base station records the current association solution again
for accumulation.

In this work, ORLA is executed on each base station in a
distributed way. Each station masters its current situation. The
learning and decision are put on the base station side. The user
side does not need to do any sophisticated computation. After
the initial reinforcement learning ends, we let the historical-
based reinforcement learning always stay to cope with the
dynamic changes. Each base station uses its historical expe-
riences to give an association decision. Meanwhile, through
a reward from the current environment, ORLA adjusts this
decision to ensure it is a good solution. Through learning from
the historical patterns, ORLA avoids users trying blindly one
by one in vehicular networks. In the long run, ORLA can finish
the association tasks well and obtains good service rates for
vehicles.

We test ORLA over the real world vehicular movement.
We compare ORLA with the traditional max-SINR scheme
and the popular 3D (Distributed Dual Decomposition Opti-
mization) scheme. We use the variance and the overall service
rates as the metrics of load balancing. From the experiments,
first in ORLA, the number of associations with the femtocells
is more, while that with the macrocells is less. It shows the
effectiveness of ORLA in load balancing, intuitively. Second,
we count the CDFs of the overall service rates. Compared with
max-SINR and 3D scheme, ORLA has large overall service
rates with higher proportion. Meanwhile, ORLA performs
better than those comparison algorithms, with smaller variance
of the service rates. Third, we valid the convergence time of
ORLA. The results show that the worst time is below 1500ms.
Besides, the convergence time of the historical phase decreases
76.9% largely compared with the initial phase of ORLA.
It helps ORLA to deal with the dynamic environment better.

The rest of this paper is organized as follows. We review
the related work in Section II and give the system model in
Section III. In Section IV, we briefly introduce the prelimi-
nary knowledge about the reinforcement learning used in our
design. We then highlight the design architecture and describe
the ORLA scheme in Section V. We report the results from
our extensive experimental evaluation in Section VI. Finally,
we conclude the paper in Section VII.

II. LITERATURE REVIEW

Recently, the load balancing problem in cellular networks
has been studied by utilizing various kinds of optimization
techniques, such as dynamic programming, Markov decision
processes and game theory. Some outstanding studies are
done by Shen et al. [4], Boccardi et al. [5], Ye et al. [6],
Andrews et al. [7], and Jo et al. [8]. These studies explore the
network load balancing and resource allocation systematically
from domains of cellular networks, OFDM systems and mas-
sive MIMO systems. Some eminent studies of wifi offloading
are done by Cheng et al. [9], [10]. The research focuses on
offloading the services from base stations to wifi access points.
There are also some famous studies done by Yue et al. [11] and
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Han et al. [12] . The research considers the social properties
and energy consumptions to obtain the network load balancing.
The latest review can refer to literature [7], [9], [13].

In order to achieve load balancing, researchers usually
transform the association problem to a convex optimization
problem [14]. Then, the heuristic method [15], gradient pro-
jection and dual decomposition [6] can be utilized to solve the
optimization problem. After obtaining the association solution,
the studies enable the cell breathing to realize associations.
By adjusting the transmit power, the cell breathing tech-
nique [16], [17] can dynamically change the coverage area
depending on the load situation of the cells. In this course,
studies often adopt the Poisson point process (PPP) to model
the locations of users and base stations. The PPP model indeed
simplifies the optimization analysis. However, in many scenar-
ios, the homogeneous PPP model is not realistic, especially for
the traffic flows in vehicular networks.

Some studies use the dynamic programming to solve the
balancing problem. Like literature [18], it is novel to solve the
energy balancing in vehicular networks by taking advantage
of multihops between vehicles. The study specially considers
the services under the delay tolerant environment.

Some studies [19], [20] exploit the Markov decision
processes to study the association problem in discrete systems
and stochastic systems. However, it is difficult to define
reasonable state transition models and appropriate states since
the complex environment is usually unknown to users.

Some studies [10], [21]–[23] adopt the game theory to solve
the network selection problem. It requires the selection game
to converge to Nash equilibrium. In literature [22], a group
of players form a population. And then, players from one
population choose strategies against users from other popu-
lations. This method neglects the interactions among users in
a population group. However, in the real system, an individual
user has a major impact on the performance of others.

In recent years, reinforcement learning is used to address the
load balancing problem. In literature [24], a fuzzy rule-based
Q-learning method is proposed to solve the enterprise LTE
femtocells load balancing. In literature [13], [25], a monotone
hysteretic policy and an improved Q-learning method are
explored respectively to solve the energy efficiency balancing
problem in heterogeneous cellular networks. These studies
do not pay attention to the spatial-temporal distribution of
traffic flows, either in homogeneous or heterogeneous cellular
networks. A simple reinforcement learning method is not
enough to cope with the complicated environment in vehicular
networks of our study.

III. SYSTEM MODEL AND ASSUMPTIONS

A. System Model

Recently a number of economical base stations (BS) have
been deployed in the cellular network to meet the surging
traffic demands. We consider a heterogeneous case with
macrocells, picocells and femtocells coexisting in vehicular
networks. The transmit powers of the three decrease in
sequence with deploying picocells and femtocells denser than
macrocells.

In this paper, we focus on downlink (DL) in the association
scheme. We assume that all base stations have full buffers.
In a real system, it is much more difficult to implement
multi-BS association than single-BS association. Therefore,
we consider the single-BS association, i.e., one user is exactly
associated with one base station.

Let B and V denote the set of base stations and vehicles,
respectively. During the connection period, we define the
achievable rate as ci j . Typically,

ci j = log2(1 + SI N Rij ) = log2(1 + Pj gi j
∑

k∈B,k �= j Pk gik + σ 2 ),

(1)

where Pj denotes the transmit power of base station j , σ 2

denotes the noise power level, and gi j denotes the channel gain
between vehicle i and base station j , which includes antenna
gain, path loss and shadowing. The sum

∑
k∈B,k �= j Pk gik

represents the interferences coming from the heterogenous
base stations.

B. The Measurement of Load Balancing

In this work, load balancing is a concept for describing
the status of the whole network system, not for a single base
station. Since each base station generally serves more than one
vehicle, vehicles associated with the same base station need
to share resources. Therefore, the key metric for performance
is service rate, not SINR simply [6], [7]. The service rate
experienced by a vehicle depends on the load of a base station,
i.e., how the base station allocates its resources among its
associated vehicles. We set the start time as t0 and the current
time as t . We use τ (t0 ≤ τ ≤ t) as a variable about time in
the following Eq. (2), without confusing with the current time
t . If vehicle i is associated with base station j , we define the
long term service rate as Rij (t), having

Rij (t) = fi j (t)
∫ t

t0
xi j (τ )ci j (τ )d(τ ), (2)

where fi j (t) denotes the fraction of resources that the base

station j serves vehicle i , having fi j (t) =
∑τ=t

τ=t0
xi j (τ )

t−t0
. Let

xi j (τ ) denote a scheduling indicator, xi j (τ ) ∈ {0, 1}. If the
base station j schedules the vehicle i at time τ , t0 ≤ τ ≤ t ,
we have xi j (τ ) = 1, and vice versa.

When we measure the load balancing of a network, a good
load balancing should satisfy the following two characteristics:

• The overall service rates
∑

j∈B

∑

i∈V
Ri j (t) is large.

• The variance of users’ service rates Ri j (t) is small.
It is intuitive in reality. First, a network with good balancing

means that the network congestion is not severe. So the
overall service rates should be large. Second, the aim of
vehicular association is to make most of the vehicles can be
associated with the base stations, rather than only several ones.
Meanwhile, each associated vehicle should have a relative
good service rate, with the rate fluctuating around the average
level at least. Otherwise, a bad service rate below the average
level greatly is meaningless for vehicles.
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Here, we need to point out that there are some other metrics
of load balancing. For example, in literature [9], [10], Sherman
et al. use the utility function of delay to measure the load
balancing in wifi offloading problem. This metric is usually
used to study the performance about offloading some services
from base stations to wifi access points. Yue et al. [11] and
Han et al. [12] usually use the Jain’s index of throughput to
measure the load balancing. This utility is similar to above
two characteristics of service rate stated by us. Based on the
application background and convenience for comparing with
the similar schemes, we use the overall service rates and the
variance of service rates as the metrics of load balancing in
our following experiment, which is as same as the metrics in
literature [6].

C. Mobility and Resource Allocation

In literature [6], the system model is applied to the low
mobility environment. The achievable rate ci j is assumed to be
independent of channel qualities. Correspondingly, the optimal
resource allocation is equal allocation. In our paper, we take
into account time-varying channels and vehicle mobility. Thus,
the proportional fair scheduling is adopted in the paper.
In stochastic settings, the proportional fair scheduling con-
siders the system performance and user fairness. It can satisfy
the service requirements of those terminals with good channel
qualities, and meanwhile pay attention to the terminals with
bad channel qualities.

In proportional fair scheduling scheme, we have the alloca-
tion priority of vehicle i as,

APij (t) = ci j (t)

Rij (t − 1)
. (3)

According to Eq. (3), each vehicle calculates its priority at
each time slot. The base station will schedule vehicles based
on the priority. We can see if the base station j continually
schedules a vehicle with good channel quality, the value of
denominator increases. Then the priority decreases and the
fraction of resources of the vehicle to obtain also decreases.

Besides, in vehicular networks, the speed of a vehicle
is much lower than that of the high-speed railway. So, for
convenience, we set a threshold � to update the achievable
rate ci j (t). It means that if |ci j (t) − ci j (t − 1)| < � (� is a
small positive number), we have ci j (t) = ci j (t −1), otherwise,
we update the achievable rate ci j (t).

IV. PRELIMINARY

In this section, we briefly review the basic idea of rein-
forcement learning adopted in our design. In the introduction,
we give the definition of reinforcement learning and introduce
its characteristics briefly. The model of reinforcement learning
system is shown in Fig.2.

There are four elements in the reinforcement learning sys-
tem: a policy, a reward function, a value function and an
optional model of the environment.

A policy defines the learning agent’s way of behaving at a
given time. Generally speaking, a policy is a mapping from
perceived states of the environment to actions to be taken when

Fig. 2. The model of reinforcement learning.

Fig. 3. The architecture of ORLA.

in those states [2]. Assuming that S denotes the state space
and A denotes the action space, we define a policy π(s, a) as
the probability of choosing action a in state s, S× A → [0, 1].

A reward function maps each perceived state (or state-
action pair) of the environment to a scalar number. A reward r
is an immediate sense with indicating the intrinsic desirability
of that state.

A value function specifies what is good in the long run
accumulation. Rewards are given directly by the environ-
ment, but values must be estimated and re-estimated from
the sequences of observations. The common value functions
include T-steps cumulative reward E[ 1

T

∑T
t=1 rt ] and discount-

ing cumulative reward E[∑+∞
t=0 γ trt+1], in which rt denotes

the reward in the t-th step and E denotes the expectation.
A model of environment is usually an optional compo-

nent in some reinforcement learning systems. It mimics the
behavior of the environment. Given a state and an action, the
model might predict the resultant next state and next reward.
In most reinforcement learning problems, the model of the
environment is unknown.

From Fig.2, an agent receives an input s from the environ-
ment in the reinforcement learning system. Then according to
the inner inference scheme, the agent outputs the correspond-
ing action a. Under the action a, the environment transits to
a new state s′ and generates an immediate reward single r
feeding back to the agent. Based on the current reward and
state, the agent chooses the next action. The choosing principle
is to make the probability of the positive reward increase. The
object of a reinforcement learning agent is to maximize the
total rewards it receives in the long run.

The model mentioned above is just a basic architecture of
reinforcement learning. How to use it smartly in our ORLA
design is provided in Section V.

V. ONLINE REINFORCEMENT LEARNING ASSOCIATION

SCHEME

In this section, we discuss the design principle and give
the detailed description of ORLA. The architecture of ORLA
is shown in Fig.3. In ORLA, we first design the initial
reinforcement learning method to obtain the association results
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for vehicles in the dynamic environment (Steps (1) and (2)
in Fig.3). These association results are cumulated in each base
station (Step (3)). After a period of learning, when the base
station meets network changes again, the base station can use
the historical association patterns to solve the new association
results directly and adaptively (Steps (4) and (5)), i.e., the
historical-based reinforcement learning method for ORLA.
Then the new obtained association results will be recorded
again in each base station (Step (3)). Thus, taking advantage of
historical association patterns, each base station does not need
to do the initial reinforcement learning without any referential
experiences. We let the historical-based reinforcement learning
operate continually in ORLA. In Fig.3, we can see the associ-
ation patterns, the historical-based reinforcement learning, and
the association decision form a circle (Steps (3), (4) and (5))
to adaptively handle the network changes.

A. Initial Reinforcement Learning

1) Initialization: Each base station knows its service sup-
plies/resources K j and its service demands D j . The initial
value of D j is defined as the number of vehicles that are in
the communication range of base station j . Each user measures
the SINR by using pilot signals and broadcasts its achievable
rate ci j to all base stations at each time slot.

Then, we define a price value for each base station as μ j =
D j − K j . The price value can be either positive or negative.
We also define a decision value between base station j and
vehicle i as di j = ci j − μ j .2 We can see if the base station j
is over-loaded, its price μ j is high. Then the decision value
may be small.

Besides, through communicating with other base stations
periodically, each base station can maintain an SINR matrix
with the element ci j and an association matrix3 with element
{0, 1}. The value 1 means that there is an association between
vehicle i and base station j , and vice versa. If the achievable
rates ci j of some vehicles are not received by the base stations,
we set the corresponding values as zero in the SINR matrix.
The dimensions of the two matrices are both |V | × |B|.

2) Learning Method: Based on the above information,
we design the initial reinforcement learning method for ORLA.
It can be seen as a single-step reinforcement learning task. The
theoretical model is an N-armed bandit problem [2]. In ORLA,
each base station acts as an independent learning agent.

• The environment is the current vehicular network.
• The action is defined as the base station trying to build

associations with some vehicles.
• The reward is defined as a reciprocal of the deviation

of average service rate for all users (see Eq. (4)). For a base
station j , assume that we obtain the association results through
learning, i.e., knowing which vehicles associated with base
station j . The reward r j defined for the association of base

2In the experiment, through scaling up/down, we set ci j and μ j having the
same order of magnitude.

3Note that we consider the time-varying channels and vehicle mobility, the
above SINR matrix and association matrix is related with time t . To simplify
notations, we omit the index t in some parts, especially in Algorithm 1-3.

station j can be calculated as:

r j = 1
∑|S j |

i=1
1

|S j | · (Rij −
∑|B|

k=1

∑|V |
i=1 Rik

|V | )2
, (4)

where Sj denotes the set of vehicles associated with base
station j . The values of Sj and Rij can be obtained through
the SINR matrix and the association matrix.

Before describing the learning method, we define a mathe-
matical operator Z � z. It means that under the condition z we
calculate the value of function Z .

At t-th iteration of initial reinforcement learning:
Step 1: Each base station calculates the decision value

di j (t) = ci j (t) − μ j (t).
Step 2: Each base station sends the decision values to all

vehicles.
Step 3: Each vehicle chooses the best decision value,

i.e., arg max j di j (t), and tries to associate with the corre-
sponding base station j . Then the set of actions Sj (t) can be
obtained. Note that in iterations, there may exist two or more
set of actions that are totally equal, e.g., Sj (t) = Sj (t + 1).
In the following parts, we set an index l to differ the different
set of actions, denoted as Sl

j (l = 1, 2, . . .).
Step 4: Based on Step 3, each base station can calculate

its current reward r j (t) according to Eq. (4), i.e., the value of
r j (t) � Sl

j .
Step 5: Calculate the long term average cumulative reward

Q j (t) for the action set Sl
j , having

Q j (t) � Sl
j = (Q j (t − 1) � Sl

j ) × count (Sl
j ) + (r j (t) � Sl

j )

count (Sl
j ) + 1

,

(5)

where count (Sl
j ) represents a counter to calculate the cumu-

lative number of choosing the action set Sl
j .

Step 6: Then we adjust the price value according to the
three following points.

• If the current reward r j (t) � Sj (t) ≥
∑

k∈B,k �= j rk (t)�Sk(t)
|B|−1 , we

maintain the price μ j (t + 1) = μ j (t).

• Else if |
∑|S j (t)|

i=1 Ri j (t)
|S j (t)| >

∑|B|
k=1

∑|V |
i=1 Rik (t)

|V | |, we decrease the
price value with μ j (t + 1) = (1 − δ(t)) · μ j (t).

• Else, we increase the price value with μ j (t + 1) = (1 +
δ(t)) · μ j (t), where δ(t) ∈ [0, 1) is a stepsize chosen in the
experiment.

Step 7: If for all Sl
j (l = 1, 2, . . .), satisfying |Q j (t) � Sl

j −
Q j (t −1) �Sl

j | < ε (ε is a small positive number), the iteration
ends. The base station obtains the final association results Sl

j

based on arg maxSl
j
(Q j (t) � Sl

j ).
4 Else, we turn to Step 1 and

iterate continually.
Step 8: According to the final association results Sl

j in
Step 7, the base station j knows which vehicles can be asso-
ciated with it. Then base station j informs the corresponding
vehicles to start associations, and meanwhile, base station j
records the association results in itself.

4If a vehicle receives more than one association signal, it will choose the
best one with the maximal service rate to associate.
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3) Analysis: In above initial reinforcement learning, there
are two factors that motivate the iterations. One is the dynamic
achievable rate ci j (t), the other is the price μ j (t) resulting
from the unbalanced associations. When the base station tries
to build associations with some vehicles, it will receive a
reward corresponding to these actions. Although each base
station makes decisions itself, we have the reward r j contain-
ing the global average service rate to guarantee the effect of
learning. Then if the reward is bad, the base station adjusts
its price, i.e., we use reward r j as a basis to adjust the price
of a base station. Through multiple iterations, we learn the
best cumulative reward of these actions according to Eq. (5).
The optimal actions can be chosen based on the cumulative
reward. The overhead analysis of initial reinforcement learning
is provided in Section V-D.

Due to mobility, the initial reinforcement learning with
time-varying ci j (t) is a little bit complicated than the other
optimization methods with constant rate ci j . But it avoids the
invalidation of association solution with bad overall service
rates. In experiments, we obtain that the worst iteration time of
initial reinforcement learning is below 1500ms. It is tolerable
in vehicular associations.

B. Association Pattern

ORLA uses the initial reinforcement learning as a cold start.
Due to network changes, each base station can cumulate a
series of association patterns (association results) of its own
after a period of time. The association pattern is defined as
follows.

An association pattern of base station k is defined as under
what kind of SINR condition and price value, which vehicles
are associated with the base station k. Specially, the association
pattern can be described/recorded by using the three following
elements.

• An SINR matrix. It is denoted by Ck
p with the element

ci j , of which k denotes the index of the base station, p denotes
the sequence number of the pattern.

• An association matrix. It is denoted by Ak
p with the

element {0, 1}, of which the value 0 or 1 means whether the
vehicle is associated with base station k or not;

• A price value. It has been defined in Section V-A.
Those recorded patterns are the valuable experiences for

our following historical-based reinforcement learning in
Section V-C. When doing the historical-based reinforcement
learning, new obtained association patterns are continually
recorded in each base station.

C. Historical-Based Reinforcement Learning

Based on above pattern records, when the environment
changes, base stations will face new association demands
coming from vehicles. Since the spatial-temporal regularities
exist in vehicular networks, we can use the historical associa-
tion patterns to deal with the network changes. Then, ORLA
designs a historical-based reinforcement learning method for
load balancing. Here, each base station is also regarded as
a reinforcement learning agent. We give the pseudo-codes of

historical-based reinforcement learning for base station k in
Algorithm 1.

• The environment is the current vehicular network.
• The action is defined as the base station choosing one of

the historical association patterns.
• The reward is as same as the definition in Eq. (4).

Algorithm 1 Historical-Based Reinforcement Learning
1: r = 0; P denotes the set of the historical association

patterns;
2: for (p = 1; p ≤ |P|; p + +) do
3: Q(p) = 0, count (p) = 0;
4: end for
5: for (t = 1; t ≤ T ; t + +) do
6: if (max( function sim(p′, p)) < λ) then
7: Turn to the phase of the initial reinforcement learning;
8: else
9: if (rand() < ε) then

10: if (elements in set P are not totally selected ) then
11: Choosing pattern p with the condition

arg maxp (function sim(p′, p));
12: P = P \ {p};
13: else
14: Choosing pattern p from the set P uniformly;
15: end if
16: else
17: Choosing pattern p with the condition

arg maxp Q(p);
18: end if
19: end if
20: Do function allocation(p′, p);
21: Calculating the reward r according to Eq. (4);
22: Q(p) = Q(p)×count (p)+r

count (p)+1 ;
23: count (p) = count (p) + 1;
24: end for
25: Making a final action decision, i.e., choosing the final

pattern p with maximal Q(p);
26: Do function allocation(p′, p);
27: Output the association matrix Ak

p′ ;

In the historical-based reinforcement learning, we assume
that on base station k, it has a set of pattern records P . So there
are |P| different kinds of actions. We initialize count (p)
as the chosen times of the historical pattern p and Q(p)
as the cumulative reward of pattern record p (Lines 2-3).
After that, for a current case p′ with current SINR matrix
Ck

p′ and current price μk
p′ of the base station k, we calculate

the similarity between the current case p′ and each historical
pattern p. If the maximal similarity is below a threshold λ
(defined in experiments), we will turn to the phase of initial
reinforcement learning (Lines 6-7). It means that the historical
experiences have low utilities to solve the current association
problem. Otherwise, we focus on choosing actions among
the |P| association patterns in the number of T iterations,
T > |P|. The T iterations end until for all p ∈ P , we have
Q(p) converge, i.e., the value of |Qt (p) − Qt−1(p)| is below
a small positive number. Note that, since we consider the
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time varying channels, the new pattern p′ may change after
once iteration. This is the reason why we need to learn. The
environment changes, the reward values in Lines 21-22 also
change.

In both initial reinforcement learning and the historical-
based reinforcement learning, the convergence solutions are
usually the vehicles whose channel changing is not greatly
severe. For those vehicles that are in the border of two base
stations’ coverage areas, the solutions often converge in
vehicles with the achievable rates calculated in the area where
the head of the vehicle towards to.

Algorithm 2 Similarity of Two Patterns: sim(p′, p)

Input:
The current and historical SINR matrices Ck

p′ and Ck
p;

The current and historical prices μk
p′ and μk

p;
Output:

The similarity value;
1: Set vec(k, p′)= sort the k-th column of matrix Ck

p′ ;
Set vec(k, p)= sort the k-th column of matrix Ck

p;
2: Calculate the Pearson distance P D(vec(k, p′), vec(k, p))

between vector vec(k, p′) and vec(k, p);
3: Set w(k, p′) = ∑

j=k ci j , ci j ∈ Ck
p′ ;

Set w(k, p) = ∑
j=k ci j , ci j ∈ Ck

p;
4: Set W (p′, p) = w(k, p′)/w(k, p);
5: Set U(p′, p) = μk

p′/μk
p;

6: Calculate the Kullback-Leibler distance
K L(W (p′, p)‖U(p′, p));

7: Output the similarity value
α·P D(vec(k, p′), vec(k, p))−β·K L(W (p′, p)‖U(p′, p));

In Algorithm 1, there exists a trade-off problem between
exploration and exploitation in the reinforcement learning.
Exploration-only gives the chance to each action uniformly
while exploitation-only gives the chance to the best rewarded
action at present. Obviously, exploration-only can estimate the
corresponding reward for each action with losing many chance
to choose the optimal action. While, exploitation-only cannot
estimate the expectation of the reward well for each action.
If we want to maximize the final cumulative reward, we need
to find a middle way between exploration and exploitation.

Here we use a ε greedy method [2] to choose the actions.
It can balance the exploration and exploitation. When the
random value is below the threshold ε, we first use the
maximal similarity to choose the action (Lines 9-12). Then
if all the patterns are traversed, we will choose the action
uniformly (Lines 13-15). When the random value is beyond
the threshold ε, we choose the action with maximal cumulative
reward (Lines 16-18). Through multiple iterations, the average
reward Q(p) of each action can be approached (Lines 19-23).
In this method, the maximal similarity can guarantee the
algorithm to find the possible optimal value quickly. Finally,
we choose the association action with the best cumulative
reward (Lines 25-26).

In Algorithm 1, there are two important components, Algo-
rithm sim(p′, p) and Algorithm allocation(p′, p), shown in

Algorithm 2 and Algorithm 3. Algorithm sim(p′, p) is used to
calculate the similarity between the historical pattern p and the
current case p′. Algorithm allocation(p′, p) is used to allocate
the possible association actions for vehicles in current case p′
based on the historical association pattern p. We describe the
two algorithms as follows.

Algorithm 3 Association Allocation: allocation(p′, p)

Input:
The current and historical SINR matrices Ck

p′ and Ck
p ;

The current and historical prices μk
p′ and μk

p;
The historical association matrix Ak

p;
Output:

An association matrix Ak
p′ for SINR matrix Ck

p′ ;
1: Sort the elements ci j in Ck

p with j = k, ci j �= 0 and
put them into vector X p,k ;

2: Sort the elements ci j in Ck
p′ with j = k, ci j �= 0 and

put them into vector X p′,k ;
3: Sort the elements ci j in X p,k with the corresponding

element in Ak
p = 1 and put them into vector Yp,k ;

4: Define a set Y = ∅ that is used to record the chosen
association elements for the current case p′;

5: Calculate the number of vehicles that requires to be asso-
ciated as:

NU M = �μk
p′

μk
p

× dim(X p′,k )

dim(X p,k ) × dim(Yp,k);

/∗ Let dim(·) denote the dimension/length of a vector. ∗/
6: if (NU M < dim(Yp,k)) then
7: Use binary approaching method to obtain association

matrix Ak
p′ , which is described in Algorithm 4;

8: else
9: Use multi-spot diffusion method to obtain association

matrix Ak
p′ , which is described in Algorithm 5;

10: end if
11: Output the association matrix Ak

p′ ;

1) Similarity of Two Patterns: In this work, the similarity
of two patterns is defined as the proximity degree of the distri-
bution of service requirements ci j under a certain distribution
of prices. Therefore, in Algorithm sim(p′, p) (pseudo-codes in
Algorithm 2), we first use the Pearson distance to calculate the
distribution similarity of the service requirement ci j between
the historical pattern p and the current case p′ for base station
k (Lines 1-2). The Pearson distance is used to measure the
correlation between two samples. It can be used in the situation
with different orders of magnitudes or evaluation criteria.
Since in our study, the current requirement ci j in Ck

p′ and
the historical ci j in Ck

p may have different scales, the Pearson
distance is suited to characterize the similarity between them.
The range of value is [−1, 1]. The value 1 means the maximal
positive correlation.

Then, we use the Kullback-Leibler distance to calculate the
distribution similarity between the requirement ratio (Line 4)
and the price ratio (Line 5) for the historical pattern p and
the current case p′ (Lines 3-6). The Kullback-Leibler distance
is used to measure the similarity between two distributions.
It can obtain the uncertainty degree of distribution W (p′, p)¡¡
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by using distribution U(p′, p) approximately estimating the
distribution W (p′, p). The range of value is [0, 1]. The value 0
means that the two distributions are the same.

Finally, we have a synthetical similarity with putting differ-
ent weights α and β on the Pearson distance and Kullback-
Leibler distance, respectively. Usually we have α = β = 0.5.

2) Association Allocation: In Algorithm 1, when the base
station chooses a historical pattern as its current action, ORLA
uses Algorithm allocation(Ck

p′, Ck
p) to make an association

allocation for the current vehicles based on the historical
experience. Our principle is to make the current associa-
tion allocation having the similar allocation distribution to
the historical association. The pseudo-codes are described in
Algorithm 3.

First, for a base station k, ORLA needs to solve how many
vehicles can be associated with it in the current case. Here,
ORLA uses the proportional allocation method (Lines 1-5 in
Algorithm 3). Let dim(·) denote the dimension of a vector.
Specially, if the base station k allocates the number of
dim(Yp,k) vehicles from dim(X p,k) demands with price μk

p
in the historical pattern p, the base station k will allocate
the proportional number of NUM vehicles from dim(X p′,k)
demands with price μk

p′ for the current case p′.
Second, ORLA needs to solve which vehicles can be

associated with the base station k in the current case. It is
classified into two situations (Lines 6-10 in Algorithm 3). Note
that in Algorithm 4 and 5, some initialization/prior information
has been provided in Algorithm 3 (Lines 1-4).

• Situation 1: NU M < dim(Yp,k). It means that the
number of vehicles required to be associated in the current
case p′ is below the number of allocated vehicles dim(Yp,k)
in the historical pattern p. Here, we use a binary approaching
method, described in Algorithm 4.

• Situation 2: NU M ≥ dim(Yp,k). It means that the
number of vehicles required to be associated in current case
p′ is beyond the number of allocated vehicles dim(Yp,k)
in historical pattern p. Here, we use a multi-spot diffusion
method, described in Algorithm 5.

3) Analysis and Brief Summary: In Algorithm 4 and 5,
the principle is to choose the vehicles having the similar
features to the historical association pattern.

When NU M < dim(Yp,k), we use the binary approaching
method (Algorithm 4) to scale down and find the appro-
priate elements. We utilize the binary method to partition
the historical association vector continually and find the
feature distribution of the associated vehicles. By using the
same feature distribution, we can finally find the appro-
priate vehicles for forthcoming associations. The detailed
explanations of each step in Algorithm 4 can be found in
APPENDIX A [26].

When NU M ≥ dim(Yp,k), we mainly utilize the multi-spot
diffusion method (Algorithm 5) to scale up and find the appro-
priate elements. First, we choose the equal number of elements
from the current pattern p′ with the same rank location in
the historical pattern p (Lines 1-7). We call these elements as
spots. Then, around these spot elements, we enlarge the search
range and choose integral multiple elements (Lines 8-13).
If having a remainder, we turn to the binary approaching

Algorithm 4 Binary Approaching Method

1: Split the vector X p,k into two equal vectors Xup
p,k and

Xdown
p,k ;

Split the vector X p′,k into two equal vectors Xup
p′,k and

Xdown
p′,k ;

2: Count the common elements both in vectors Yp,k and
Xup

p,k , denoted as Nup ; Count the common elements both
in vectors Yp,k and Xdown

p,k , denoted as Ndown;
3: if (NU M = 1) then
4: Choose a non-zero value y randomly from X p′,k except

the elements in set Y ;
5: Set Y = Y ∪ {y};
6: else if (Nup > Ndown and | Nup−Ndown

dim(X p,k ) | > θ ) then

7: Choose a non-zero value y uniformly from vector Xup
p′,k

except the elements in set Y ;
8: Set Y = Y ∪ {y}; NU M = NU M − 1;
9: Set X p,k = Xup

p,k and X p′,k = Xup
p′,k ;

10: Do binary recursion continually;
11: else if (Nup < Ndown and | Nup−Ndown

dim(X p,k ) | > θ ) then
12: Do the similar operations as Steps 7-10 in the opposite

vector;
13: else if (| Nup−Ndown

dim(X p,k ) | ≤ θ ) then
14: Choose two non-zero values y and y ′ uniformly from

vector Xup
p′,k and vector Xdown

p′,k respectively except the
elements in set Y ;

15: Set Y = Y ∪ {y, y ′}; NU M = NU M − 2;
16: Do the similar operations as Steps 9-10;
17: end if
18: Set the corresponding values of set Y in matrix Ak

p′ as 1;

method to complete the association allocation (Lines 14-16).
Finally, we obtain the association matrix.

After the base station learns the association decision Ak
p′ by

using the historical-based reinforcement learning, it informs
vehicles to associate with it.

Note that in Algorithm 3, since there are spatial-temporal
regularities in vehicular networks, some patterns have high
similarity. ORLA only reserves one of them in order to avoid
the curse of dimensionality. It also can speed up the learning
process of ORLA.

D. Complexity Analysis

We analyze the complexity of ORLA from the following
three aspects.

First, in initial reinforcement learning, we let each base
station act as an independent agent. Although the association
decision is made in a distributed manner, we still need some
cooperative information to guide the iterations without losing
the global aim of load balancing. Besides, it is normal that
coping with the dynamic environment may bring about more
overheads than the static one. The amount of cooperative
information is order of I · (|B||B − 1| + |B||V |), where I
is the total number of iterations. The information exchange
includes the interactions among base stations (SINR matrix
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Algorithm 5 Multi-Spot Diffusion Method
1: Define a new set S P OT ;
2: Initialize an object rank that is used to label the rank

location of an element in a vector;
3: for (each element i in vector Yp,k) do
4: rank.i =the location of element i in vector X p,k ;
5: Choose the corresponding element j , with rank location

rank. j = dim(X p′,k )

dim(X p,k ) × rank.i , from X p′,k ;
6: Put the element j into the set S P OT ;
7: end for
8: Set q = � NU M

dim(Yp,k )�;
9: for (each element j in set S P OT ) do

10: Set the element j as a center spot in X p′,k and choose
number of q elements from X p′,k with the nearest dis-
tance from the center spot j , including the spot itself.

11: Put the number of q elements into the set Y ;
12: end for
13: Set the corresponding values of set Y in matrix Ak

p′ as 1;
14: if (NU M − q · dim(Yp,k) �= 0) then
15: Turn to use the binary approaching method;
16: end if

and association matrix) and the interactions between the base
stations and vehicles (ci j broadcast).

Fortunately, in a big vehicular network, the network area
is usually divided into many small areas based on road
intersections. It is allowed that the load balancing is achieved
only in small local areas. Thus the overhead can be controlled
in local areas. In our experiments, we also choose a region
to do the association algorithm. The scalability in large scale
dynamic networks is our future work.

Second, in historical-based reinforcement learning, the
action selection does not need to try blindly in many times
since each action can be traversed by using similarity as
its guidance. Besides, due to the spatial-temporal features of
traffic flows, there are many similar historical patterns. ORLA
combines the similar ones and only maintains some represen-
tative association patterns. It guarantees the search space will
not increase too large. Thus, the historical-based reinforcement
learning can also converge well. In the experiment, we also
can see the good performance of the convergence for ORLA.

Third, since we push all the calculations on the base station
side, not the user side, the computational capability can be
guaranteed for some tasks like binary search and element
sorting.

VI. EVALUATION

We use real-life GPS-based vehicle mobility traces to
evaluate the efficiency of ORLA. Our dataset comes from
QiangSheng taxi movement. The dataset contains traces about
117 taxis. The traces are collected from April 1st to April 30th
in Shanghai, China, 2015. The taxi periodically sends reports
back to the data collector via an onboard GPS-enabled device.
The information in the dataset includes vehicle ID, latitude,
longitude, timestamp, vehicle moving speed, heading direction
and onboard information.

Fig. 4. The traces of QiangSheng taxi movement and the experiment area
marked by the red rectangle.

Fig. 5. The GPS locations of 20 base stations.

In Fig.4, the blue lines depict the moving traces of 117 vehi-
cles. In those traces, there are some noisy data with including
some weird long straight segments that could not represent
real taxi paths in a city. We preprocess the dataset and capture
an area to do experiments. The captured area is marked
by the red rectangle in Fig.4. The latitude of the captured
area is between [31.15, 31.30]. The longitude is between
[121.25, 121.45]. The high-resolution original image of Fig.4
is provided in [27]. In this area, there are totally 76 vehicles
and 20 base stations, including 5 macrocells (red asterisks),
5 picocells (yellow asterisks) and 10 femtocells (black aster-
isks). The GPS locations of 20 base stations depicted in Fig.4
are provided in Fig.5. The transmit powers of the three ties of
base stations are 46dBm, 35dBm and 20dBm, respectively.
For the macros/picocells, we set the path loss L(di j ) =
34 + 40 log(di j ). For the femtocells, we set the path loss
L(di j ) = 37 + 30 log(di j ), where di j denotes the distance
between the vehicle i and base station j . The noise power σ 2

is -104dBm. The bandwidth is 10MHz. Besides, we set the
similarity threshold λ as −0.25 in the experiment.

A. Loads Among Different Base Stations

In the paper, we compare ORLA with two association
schemes, max-SINR and 3D (Distributed Dual Decomposition
Optimization) [6]. The former is a traditional scheme, in which
users choose the association base station with the maximal
SINR. The latter is a popular method that transforms the user
association to a utility maximization problem. The problem is
solved by using gradient descent and dual decomposition. The
algorithm of 3D is deployed separately on user side and base
station side in heterogeneous networks.
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Fig. 6. Number of associations in three ties of base stations.

Fig. 7. The CDFs of overall service rates for three comparison methods.

We compares loads among three different association meth-
ods. In Fig.6, we capture the association results when conver-
gence ends. The max-SINR association results in unbalanced
loads, in which the macrocells are over-loaded, while the
picocells and femtocells only serve fewer users. In ORLA,
the load is shifted to the less congested femtocells, which
suggests that our scheme ORLA alleviates the asymmetric
load problem. It shows the effectiveness of ORLA. The results
of 3D and ORLA are similar since the near-optimal results are
both obtained by them.

B. Service Rates and Convergence

In Section III-B, we give the metrics of load balancing,
i.e., the overall service rates and the variance of users’ service
rates. The large overall service rates and small variance mean
that the base stations are not congested and can provide enough
resources to support the network services.

Fig.7 shows the cumulative distribution functions (CDFs) of
the overall service rates for three different association schemes.
First, we can see that the beginning point of ORLA is bigger
than max-SINR and 3D scheme, and the tail of ORLA is also
longer than them. Second, the CDF of ORLA improves at a
low rate compared with max-SINR and 3D scheme. All above
phenomena show that the bigger overall service rates occupy
a high proportion in ORLA.

Fig.8 shows the distribution of service rates for 20 high-
activity vehicles. By using the statistical tools in MAT-
LAB, in Fig.8, the overall service rates are 0.1051bits/s/Hz,
0.1096bits/s/Hz and 0.1296bits/s/Hz for max-SINR, 3D and
ORLA, respectively. Meanwhile, the variance values of service
rates are 4.2359e-005, 3.0072e-005 and 2.3642e-005 for max-

Fig. 8. The distribution of service rates.

Fig. 9. The convergence time of ORLA.

SINR, 3D and ORLA, respectively. We obtain that ORLA has
the largest overall service rates with smallest variance value.
Therefore, combining Fig.7 with Fig.8, we can see that ORLA
provides a more uniform user experience with higher service
rates for vehicles. It also benefits the overall performance of
the whole network system.

Fig.9 shows the convergence time in 1400 successive
convergence tests on QiangSheng dataset. Each convergence
contains multiple iterations. First, we can see that the worst
convergence time is still below 1500ms. Second, there is an
obvious boundary in Fig.9, marked by a dash line. The left side
of the dash line represents the initial reinforcement learning,
and the right side represents the historical-based reinforcement
learning. It means that, at the beginning, ORLA pays much
more time to cope with the dynamic traffic flows (new arrivals
and departures). After that, based on the historical experiences,
76.9 % convergence time is saved. All above phenomena verify
the effectiveness of ORLA in vehicular networks.

C. Analysis

Here, we give some analyses of the results in Fig.7, Fig.8
and Fig.9. First, in 3D scheme, the assumption of constant
rate ci j and Poisson point process model may result in the
invalidation of the association solution in vehicular networks,
since the vehicles have run away from the current location.
It means that the association solution is not appropriate for
the current environment. The performance of dealing with the
dynamic case of ORLA is stronger than 3D. Thus, the variance
and the overall service rates of ORLA are in better state than
that of 3D.
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Second, once the network changes, the 3D scheme must
rerun in the whole network area. It costs high when doing
re-association in the new network environment. In fact, the
traffic flows have the spatial-temporal regularity in vehicular
networks. It inspires us to directly utilize the historical and
regular association patters to allocate the resources to current
vehicles. In the historical-based phase of ORLA, we use
the historical records to learn the association solutions. The
results may not be optimal, but in the dynamic network,
the near-optimal is accepted since the most important thing
is to make vehicles communicate with base stations timely. In
the historical-based phase, taking advantage of the regularity,
our association patterns are alleviated into several ones in the
experiment. It largely scales down the learning dimension, and
meanwhile speeds up our learning process. Besides, we use
similarity to help the algorithm traverse each historical associ-
ation pattern. It avoids the algorithm trying many times blindly.
Above all, although it seems that there are more operations in
ORLA than in 3D scheme, the spatial-temporal regularities
indeed help ORLA save the convergence time a lot so as to
cope with the dynamic environment.

D. Discussion

In above experiments, the achievable rate is set to be
updated according to threshold �. The threshold is set as
0.0001 bits/s/Hz, a small positive number. This value can be
seen as an empirical value which comes from the statistical
results of all the historical achievable rates. The threshold
decides the sensitivity of the change of achievable rate. The
smaller the threshold value is, the higher precision the exper-
imental results have. Specially, a better way is to update this
threshold dynamically with respect to the vehicle’s mobility
change. For example, if the speed of a vehicle is low in reality,
the change of achievable rate between the vehicle and the base
station will be small. Thus the threshold � can be set small
for this vehicle, and vice versa. In the future, we can utilize
this way to investigate our study.

Additionally, we know that there are various kinds of
network traffic flows generated by private cars, taxies, etc.
Due to privacy protection, we cannot collect and obtain the
data from the private cars. Thus, in the experiments, we use
the taxi traffic to emulate the generic vehicular network traffic.
It is an assumption of our study. In the future, we aim to collect
more types of traffic flows to enrich our experiments.

VII. CONCLUSION

In this work we propose a scheme ORLA for load balancing
in the vehicular networks with heterogeneous base stations.
It can provide good service rates for vehicles. In the paper,
ORLA includes the phases of the initial reinforcement learning
and the historical-based reinforcement learning. Our design
exploits the spatial-temporal characteristics of the traffic flows.
Through interacting with the dynamic vehicular networks,
we let ORLA learn the association decision intelligently. In the
long run, ORLA can cope with the dynamic changes well. Our
extensive evaluations demonstrate its effectiveness against the
traditional max-SINR scheme and popular 3D scheme.
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